纺织学报 ›› 2024, Vol. 45 ›› Issue (08): 250-258.doi: 10.13475/j.fzxb.20230606002

• 综合述评 • 上一篇    下一篇

智能坐姿矫正服装研究现状与发展趋势

侯煜杰1, 刘欢欢1,2,3, 王朝晖1,2,3()   

  1. 1.东华大学 服装与艺术设计学院, 上海 200051
    2.东华大学 现代服装设计与技术教育部重点实验室, 上海 200051
    3.上海市智能制造与工程一带一路国际联合实验室, 上海 200051
  • 收稿日期:2023-06-29 修回日期:2024-03-22 出版日期:2024-08-15 发布日期:2024-08-21
  • 通讯作者: 王朝晖(1967—),女,教授,博士。主要研究方向为服装先进制造。E-mail:wzh_sh2007@dhu.edu.cn
  • 作者简介:侯煜杰(2000—),女,硕士生。主要研究方向为服装先进制造与人体科学研究。
  • 基金资助:
    上海市科学技术委员会“科技创新行动计划”“一带一路”国际合作项目(21130750100)

Research status and development trend of smart sitting posture correction garment

HOU Yujie1, LIU Huanhuan1,2,3, WANG Zhaohui1,2,3()   

  1. 1. College of Fashion and Design, Donghua University, Shanghai 200051, China
    2. Key Laboratory of Clothing Design and Technology, Ministry of Education, Donghua University, Shanghai 200051, China
    3. Shanghai Belt and Road Joint Laboratory of Textile Intelligent Manufacturing, Shanghai 200051, China
  • Received:2023-06-29 Revised:2024-03-22 Published:2024-08-15 Online:2024-08-21

摘要:

为帮助人们改善不良坐姿,预防脊柱疾病,对智能坐姿矫正服装的研究进展进行综述。首先,从人体工效学的角度出发,介绍了坐姿生理学基础,表明了不良坐姿对人体造成的危害;然后基于穿戴方式归类了现有矫姿类可穿戴产品,重点阐述了坐姿矫正服装相较于矫姿带等其它产品的优势及可发展性;随后分析了智能坐姿矫正服装系统中应用到的可穿戴传感技术、系统识别不良坐姿信号的阈值判定技术及识别反馈警示技术这三大关键技术;最后从电子设备、系统识别、反馈模式、人机交互及服装安全5个方面展望了智能坐姿矫正服装未来的发展趋势。研究指出,未来应侧重于应用纺织品传感器及织物触觉系统等柔性电子设备,使其向智能化舒适化进一步发展,在医疗保健、健康监护领域具有更好的应用前景。

关键词: 坐姿矫正服装, 智能服装, 传感技术, 姿态识别, 反馈模式

Abstract:

Significance An analysis based on more than 30 years of data suggests that the number of cases of low back pain is increasing worldwide, and there will be more than 800 million people with low back pain worldwide by 2050. The reason for this phenomenon is that the development of modern education and technology has led to a dramatic change in the way people live and work, and sitting has become the most common posture used today. The sedentary process is accompanied by a variety of poor sitting posture, which causes unnatural bending of the spine and uneven distribution of forces on the spine and back, thus leading to spinal disorders, such as lumbar muscle strain, lumbar disc protrusion, and scoliosis. According to medical research, correcting sitting posture is an effective way to prevent and reduce back pain. Therefore, the development of wearable products for posture correction is necessary.

Progress The orthopedic wearable products currently available are categorized according to the way they are worn, and can be divided into head-mounted, miniature wearable and clothing wearable. From the comparison of two garment wearable products, including sitting posture correction belts and sitting posture corrective garment, it was found that the physical stretching of the orthopedic straps will have a strong sense of constraint on the body, and at the same time, the sitting posture correction belts mainly relies on inertial sensors, and the monitoring area is relatively limited. The development of smart textiles for creating smart sitting posture correction garment makes up for the shortcomings of sitting posture correction belts, which combines comfort and functionality and has greater prospects for development. This is followed by a specific analysis of the three key technologies of the sitting posture correction garment system, i.e., wearable sensing technology, system identification technology, and recognition feedback alerting technique. The monitoring methods of two major wearable sensing systems, microelectromechanical systems and smart textile systems, are described and compared. Based on the types of signal recognized by the wearable sensor, the principle of discriminating bad sitting postures is explained. The feedback methods in the smart sitting posture correction garment are introduced from three senses i.e., visual, auditory and tactile, and the results show that the multi-sensory recognition feedback mode is more effective.

Conclusion and Prospect Smart sitting posture correction garment has great advantages and practical value. It can expand the monitoring area, detailing and focusing on the areas of poor sitting posture, the development of electronic textiles makes smart sitting posture correction garment more comfortable, and it can have the dual function of passive and active posture correction, which can help to improve the poor sitting posture of human body more effectively. In the future, smart sitting posture correction garment should also be developed towards the following directions. ① Use of flexibility of electronic equipment. In the future, sensing elements and vibration feedback elements both can try to replace with intelligent textiles, so as to better integrate in the clothing. ② Enhanced accuracy of the system identification. Since the electrical signal collected by the textile sensor is affected by the sensor material, monitoring position and other factors, it is also necessary to standardize a criterion to obtain an accurate threshold classification for poor sitting posture. ③ Focusing of feedback mode. Multi-sensory feedback mode is the focus of future research, the future should be for different groups of people to take different feedback mode, and set up feedback mechanisms that can be adapted to different occasions. ④ Enhancement of human-computer interaction. The current clothing only plays the role of monitoring and feedback, but does not realize the real interaction. The future also needs to enhance human-computer interaction, guide the user to exercise. ⑤ The safety of the system clothing. Clothing not only needs to be considered for the safety of the use of electronic components, but also needs to protect the privacy and security of users. It is believed that smart sitting posture correction garment will have a good development prospect in the field of healthcare and health monitoring.

Key words: sitting posture correction garment, smart garment, sensing technology, posture recognition, feedback mode

中图分类号: 

  • TS941

图1

国际人机工程学会的标准坐姿"

图2

人体脊柱结构"

表1

坐姿矫正类可穿戴产品分类情况与优缺点总结"

穿戴
方式
产品形态 优点 缺点
头戴
矫姿眼镜 方便轻巧,可随身携带 监测区域局限,不适于佩戴眼镜的近视人群,成本高
挂耳式矫姿器 便捷,适配度较高 监测区域局限,长时间佩戴会造成耳朵的负担
佩戴
智能胸扣 容易隐藏,小巧便于携带 监测区域局限,必须与皮肤直接接触,无法佩戴于宽松的衣服中
背部粘贴式矫姿器 监测区域局限,需用医用胶粘贴于皮肤,不够舒适
穿着
矫姿带 方便穿脱,可辅助矫姿 物理拉伸会勒胳膊,整体结构设计不够舒适
矫姿服 舒适透气,监测更全面精准 需要谨慎选择材料,成本也会更高

表2

智能坐姿矫正服装分类总结"

分类方式 原理 案例
服装
款式
上衣 监测人体背脊部弯曲角度变化情况 美国Adela Health发明的TruPosture智能衬衫
裤装 监测臀部压力 Skach等[18]研发的一种智能裤子
外力
辅助
张力型 服装表面受到压力后触发伸张带进行拉伸 法国公司研发的Percko新型智能身姿矫正衣
支撑型 用特定材料或结构为腰背部提供支撑 薛家和等[19]发明的智能服装

图3

智能坐姿矫正服装系统关键技术"

表3

智能坐姿矫正服装中的可穿戴传感技术总结"

传感器类型 监测
信号
监测位置 优势 劣势
惯性传感器 加速
度、角
速度
脊柱区域 尺寸小、便携性、性能稳定 具有刚性、只能附着于织物表面、舒适度不高
纺织
品传
感器
应变传
感器
电信
号(电
容、电
阻、电
压等)
脊柱和背部其它区域(如菱形肌、斜方肌) 柔韧、透气、集成度高、舒适、可水洗 制备难度大、成本较高、稳定性需加强
电感传
感器
电感
信号
脊柱和背部其它区域(如菱形肌、斜方肌) 输出信号噪声小、信号处理简单 会受到外部环境的干扰
光纤传
感器
光量 脊柱和背部其它区域(如菱形肌、斜方肌) 专家可直观观察用户坐姿并进行分析 光纤位置会发生滑移,用户自己无法观察到光量情况
[1] LOYEN A, VAN DER PLOEG H P, BAUMAN A, et al. European sitting championship: prevalence and correlates of self-reported sitting time in the 28 European Union member states[J]. PloS ONE, 2016. DOI:10.1371/journal.pone.0149320.
[2] VERGARA MPAGE Á. Relationship between comfort and back posture and mobility in sitting-posture[J]. Applied Ergonomics, 2002, 33(1): 1-8.
pmid: 11827133
[3] BRANDOLINI N, CRISTOFOLINI L, VICECONTI M. Experimental methods for the biomechanical investigation of the human spine: a review[J]. Journal of Mechanics in Medicine and Biology, 2014. DOI:10.1142/S0219519414300026.
[4] 董辉, 敖文聪, 罗强, 等. 可穿戴的智能矫姿系统设计与实现[J]. 浙江工业大学学报, 2021, 49(1): 24-29, 93.
DONG Hui, AO Wencong, LUO Qiang, et al. Design and implementation of wearable intelligent posture correction system[J]. Journal of Zhejiang University of Technology, 2021, 49(1): 24-29, 93.
[5] 沈雷, 李仪, 薛哲彬. 智能服装现状研究及发展趋势[J]. 丝绸, 2017, 54(7): 38-45.
SHEN Lei, LI Yi, XUE Zhebin. Current situation and development trend of intelligent garment[J]. Journal of Silk, 2017, 54(7): 38-45.
[6] HARRISON D E, HARRISON D D, JANIK T J, et al. Comparison of axial and flexural stresses in lordosis and three buckled configurations of the cervical spine[J]. Clinical Biomechanics, 2001, 16(4): 276-284.
doi: 10.1016/s0268-0033(01)00006-7 pmid: 11358614
[7] SZCZYGIEŁ E, ZIELONKA K, MĘTEL S, et al. Musculo-skeletal and pulmonary effects of sitting position-a systematic review[J]. Annals of Agricultural and Environmental Medicine, 2017, 24(1): 8-12.
[8] KANEKO H, HORIE J. Breathing movements of the chest and abdominal wall in healthy subjects[J]. Respiratory Care, 2012, 57(9): 1442-1451.
doi: 10.4187/respcare.01655 pmid: 22348414
[9] 励建安. 脊柱运动的解剖和生物力学基础[J]. 中华物理医学与康复杂志, 2004(5): 54-56.
LI Jianan. Anatomical and biomechanical basis of spinal motion[J]. Chinese Journal of Physical Medicine and Rehabilitation, 2004(5): 54-56.
[10] 王琨, 白爱利, 李小生, 等. 不同坐姿下腰部负荷及竖脊肌活动的生物力学研究[J]. 西安体育学院学报, 2008(1): 67-72.
WANG Kun, BAI Aili, LI Xiaosheng, et al. The biomechanical study on the waist load and activities in erector spinae under different sitting posture[J]. Journal of Xi'an Physical Education University, 2008(1): 67-72.
[11] MARKOPOULOS P, SHEN X, WANG Q, et al. Neckio: motivating neck exercises in computer workers[J]. Sensors, 2020. DOI:10.3390/s20174928.
[12] 张晶晶, 洪文进, 苗钰. 基于Lumo健形元件技术的儿童矫姿背心设计[J]. 上海纺织科技, 2019, 47(4): 49-51.
ZHANG Jingjing, HONG Wenjin, MIAO Yu. Design of children's smart security posture vest design based on Lumo health element technology[J]. Shanghai Textile Science & Technology, 2019, 47(4): 49-51.
[13] TLILI F, HADDAD R, BOUALLEGUE R, et al. A real-time posture monitoring system towards bad posture detection[J]. Wireless Personal Communications, 2021, 120(2): 1207-1227.
[14] TLILI F, HADDAD R, BOUALLEGUE R, et al. Design and architecture of smart belt for real time posture monitoring[J]. Internet of Things, 2022, 17: 1-12.
[15] 严芳英, 何梦秋, 柯莹. 久坐人群坐姿调整背心的研制与性能评价[J]. 丝绸, 2023, 60(6): 33-39.
YAN Fangying, HE Mengqiu, KE Ying. Development and performance evaluation of a sitting posture adjustment vest for the sedentary people[J]. Journal of Silk, 2023, 60(6): 33-39.
[16] BOOTSMAN R, MARKOPOULOS P, QI Q, et al. Wearable technology for posture monitoring at the workplace[J]. International Journal of Human-Computer Studies, 2019, 132: 99-111.
[17] JAYASINGHE U, JANKO B, HWANG F, et al. Classification of static postures with wearable sensors mounted on loose clothing[J]. Scientific Reports, 2023. DOI:10.1038/s41598-022-27306-4.
[18] SKACH S, STEWART R, HEALEY P G. Smarty pants: Exploring textile pressure sensors in trousers for posture and behaviour classification[J]. Multidisciplinary Digital Publishing Institute Proceedings, 2019. DOI:10.3390/proceedings2019032019.
[19] 薛家和, 江学为, 田杰, 等. 可对人体腰椎运动进行监测及自主姿态矫正的智能服装: 202110886147.5[P]. 2021-12-07.
XUE Jiahe, JIANG Xuewei, TIAN Jie, et al. Intelligent garments that monitor human lumbar spine movements and provide autonomous posture correction, 20211 0886147.5[P]. 2021-12-07.
[20] PEREZ A J, ZEADALLY S. Recent advances in wearable sensing technologies[J]. Sensors, 2021. DOI:10.3390/s21206828.
[21] MOKHLESPOUR ESFAHANI M I, NUSSBAUM M A. Preferred placement and usability of a smart textile system vs. inertial measurement units for activity monitoring[J]. Sensors, 2018. DOI:10.3390/s18082501.
[22] AINSWORTH B, CAHALIN L, BUMAN M, et al. The current state of physical activity assessment tools[J]. Progress in Cardiovascular Diseases, 2015, 57(4): 387-395.
doi: 10.1016/j.pcad.2014.10.005 pmid: 25446555
[23] LUINGE H J, VELTINK P H. Measuring orientation of human body segments using miniature gyroscopes and accelerometers[J]. Medical and Biological Engineering and Computing, 2005, 43: 273-282.
[24] ALTUN K, BARSHAN B, TUNÇEL O. Comparative study on classifying human activities with miniature inertial and magnetic sensors[J]. Pattern Recognition, 2010, 43(10): 3605-3620.
[25] 李帅. 智能矫姿服装系统的设计与开发[J]. 毛纺科技, 2022, 50(9): 54-60.
LI Shuai. Design and development of intelligent posture correction clothing system[J]. Wool Textile Journal, 2022, 50(9): 54-60.
[26] KIM S, NUSSBAUM M A, ESFAHANI M I M, et al. Assessing the influence of a passive, upper extremity exoskeletal vest for tasks requiring arm elevation: part I:"expected" effects on discomfort, shoulder muscle activity, and work task performance[J]. Applied Ergonomics, 2018, 70: 315-322.
[27] CHERENACK K, VAN PIETERSON L. Smart textiles: challenges and opportunities[J]. Journal of Applied Physics, 2012. DOI:10.1063/1.4742728.
[28] CASTANO L M, FLATAU A B. Smart fabric sensors and e-textile technologies: a review[J]. Smart Materials and structures, 2014. DOI:10.1088/0964-1726/23/5/053001.
[29] KIM J H, CHO K G, CHO D H, et al. Ultra-sensitive and stretchable ionic skins for high-precision motion monitoring[J]. Advanced Functional Materials, 2021. DOI:10.1002/adfm.202010199.
[30] SEYEDIN S, ZHANG P, NAEBE M, et al. Textile strain sensors: a review of the fabrication technologies, performance evaluation and applications[J]. Materials Horizons, 2019, 6(2): 219-249.
[31] SIKLIGAR D, NGUESSAN L, PHAM D, et al. Design of a textile sensor embedded shirt for posture monitor-ing[C]// Proceedings of the 2022 Design of Medical Devices Conference. USA: American Society of Mechanical Engineer, 2022: 1-20.
[32] JIANG Y, AN J, LIANG F, et al. Knitted self-powered sensing textiles for machine learning-assisted sitting posture monitoring and correction[J]. Nano Research, 2022, 15(9): 8389-8397.
[33] PATIÑO A G, MENON C. Inductive textile sensor design and validation for a wearable monitoring device[J]. Sensors, 2021. DOI:10.3390/s21010225.
[34] MARTINOT-LAGARDE P, SARTENE R, MATHIEU M, et al. What does inductance plethysmography really measure?[J]. Journal of Applied Physiology, 1988, 64(4): 1749-1756.
[35] GARCÍA PATIÑO A, KHOSHNAM M, MENON C. Wearable device to monitor back movements using an inductive textile sensor[J]. Sensors, 2020. DOI:10.3390/s20030905.
[36] GONG Z, XIANG Z, OUYANG X, et al. Wearable fiber optic technology based on smart textile: a review[J]. Materials, 2019. DOI:10.3390/ma12203311.
[37] DUNNE L E, WALSH P, SMYTH B, et al. Design and evaluation of a wearable optical sensor for monitoring seated spinal posture[C]// 2006 10th IEEE International Symposium on Wearable Computers. Switzerland:IEEE, 2006: 65-68.
[38] DUNNE L, WALSH P, SMYTH B, et al. A system for wearable monitoring of seated posture in computer users[C]// 4th International Workshop on Wearable and Implantable Body Sensor Networks (BSN 2007). Germany:Springer Berlin Heidelberg, 2007: 203-207.
[39] WANG Q, DE BAETS L, TIMMERMANS A, et al. Motor control training for the shoulder with smart garments[J]. Sensors, 2017. DOI:10.3390/s17071687.
[40] ISHAC K, SUZUKI K. Lifechair: a conductive fabric sensor-based smart cushion for actively shaping sitting posture[J]. Sensors, 2018. DOI:10.3390/s18072261.
[41] HRIBERNIK M, UMEK A, TOMAŽIČ S, et al. Review of real-time biomechanical feedback systems in sport and rehabilitation[J]. Sensors, 2022. DOI:10.3390/s22083006.
[42] GOPALAI A A, SENANAYAKE S A A. A wearable real-time intelligent posture corrective system using vibrotactile feedback[J]. IEEE/ASME Transactions on Mechatronics, 2011, 16(5): 827-834.
[43] 武先杰. 一种脊椎矫姿实施警示校服: 20192 1374659.8[P]. 2020-08-14.
WU Xianjie. A spinal orthopedic implementation warning school uniform: 201921374659.8[P]. 2020-08-14.
[44] BIANCHI M. A fabric-based approach for wearable haptics[J]. Electronics, 2016. DOI:10.3390/electronics5030044.
[45] STRAKER L, MATHIASSEN S E. Increased physical work loads in modern work: a necessity for better health and performance?[J]. Ergonomics, 2009, 52(10): 1215-1225.
[46] SHAMS L, SEITZ A R. Benefits of multisensory learning[J]. Trends in Cognitive Sciences, 2008, 12(11): 411-417.
doi: 10.1016/j.tics.2008.07.006 pmid: 18805039
[1] 王建萍, 朱妍西, 沈津竹, 张帆, 姚晓凤, 于卓灵. 软体机器人在服装领域的应用进展[J]. 纺织学报, 2024, 45(05): 239-247.
[2] 王馨雨, 田明伟. 具有距离监测与辅助提示功能的自闭症儿童智能服装设计[J]. 纺织学报, 2024, 45(03): 156-162.
[3] 王中昱, 苏云, 王云仪. 机器学习建立的个体热舒适模型及其在服装领域的应用展望[J]. 纺织学报, 2023, 44(05): 228-236.
[4] 王晨露, 马金星, 杨雅晴, 韩潇, 洪剑寒, 占海华, 杨施倩, 姚绍芳, 刘姜乔娜. 聚苯胺涂层经编织物的应变传感性能及其在呼吸监测中的应用[J]. 纺织学报, 2022, 43(08): 113-118.
[5] 黄锐, 肖爱民. 基于温湿度传感器的特护失禁内裤的研发[J]. 纺织学报, 2022, 43(07): 141-148.
[6] 林文君, 缪旭红. 光导纤维在发光织物上的应用研究进展[J]. 纺织学报, 2021, 42(07): 169-174.
[7] 李一飞, 郑敏, 常朱宁子, 李丽艳, 曹元鸣, 翟旺宜. 二维过渡金属碳化物(Ti3C2Tx)对棉针织物的功能整理及其性能分析[J]. 纺织学报, 2021, 42(06): 120-127.
[8] 王玉婷, 凌忠文, 杨欣, 刘宇清. 纳米氧化钨复合棉纤维的制备及其光致变色性能[J]. 纺织学报, 2021, 42(02): 21-26.
[9] 金鹏, 薛哲彬, 戈垚. 具有实时瓦斯监测功能的新型智能矿工服设计[J]. 纺织学报, 2020, 41(11): 143-149.
[10] 张佳慧, 王建萍. 圆形纬编针织物电极导电性能及电阻理论模型构建[J]. 纺织学报, 2020, 41(03): 56-61.
[11] 李柽安, 鲁虹. 腰部运动损伤防护智能服装的研发[J]. 纺织学报, 2020, 41(02): 119-124.
[12] 孙悦 范杰 王亮 刘雍. 可穿戴技术在纺织服装中的应用研究进展[J]. 纺织学报, 2018, 39(12): 131-138.
[13] 方东根 沈雷 胡哲. 智能服装材料及其在安全性服装中的应用[J]. 纺织学报, 2015, 36(12): 158-164.
[14] 严妮妮 张辉 邓咏梅. 可穿戴医疗监护服装研究现状与发展趋势[J]. 纺织学报, 2015, 36(06): 162-168.
[15] 田苗 李俊. 智能服装的设计模式与发展趋势[J]. 纺织学报, 2014, 35(2): 109-0.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!