纺织学报 ›› 2024, Vol. 45 ›› Issue (10): 31-38.doi: 10.13475/j.fzxb.20230701201

• 纤维材料 • 上一篇    下一篇

低密度聚乙烯熔喷工艺及其非织造布性能

刘文龙1, 李好义1, 何东洋1, 李长金2, 张杨1, 马秀清1(), 李满意3, 杨卫民1   

  1. 1.北京化工大学, 北京 100029
    2.中国石油化工股份有限公司北京化工研究院, 北京 100013
    3.山东康乃尔材料科技有限公司, 山东 滨州 256600
  • 收稿日期:2023-07-06 修回日期:2024-01-11 出版日期:2024-10-15 发布日期:2024-10-22
  • 通讯作者: 马秀清(1966—),女,教授,博士。研究方向为高分子材料改性原理及其设备。E-mail:maxq@mail.buct.edu.cn
  • 作者简介:刘文龙(2000—),男,硕士生。主要研究方向为微纳米纤维先进制备及应用。
  • 基金资助:
    国家自然科学基金项目(U22B6012);中国石化总部项目(223087);中国石化首席科学家工作室项目(223207)

Melt-blown process of low-density polyethylene and its nonwovens properties

LIU Wenlong1, LI Haoyi1, HE Dongyang1, LI Changjin2, ZHANG Yang1, MA Xiuqing1(), LI Manyi3, YANG Weimin1   

  1. 1. Beijing University of Chemical Technology, Beijing 100029, China
    2. Sinopec Beijing Research Institute of Chemical Industry, Beijing 100013, China
    3. Shandong Cornell Materials Technology Co., Ltd., Binzhou, Shandong 256600, China
  • Received:2023-07-06 Revised:2024-01-11 Published:2024-10-15 Online:2024-10-22

摘要:

为探究高效制备工艺,获得综合性能优良的超细聚乙烯非织造材料,以低密度聚乙烯(LDPE)为原料,制备了低密度聚乙烯熔喷非织造布。研究了热风温度、热风流量、模头温度、接收距离和熔体流量等熔喷工艺参数对LDPE纤维平均直径的影响规律,并进一步考察了熔喷非织造布的过滤性能和力学性能。结果表明:提高热风温度、热风流量和模头温度等均有助于降低纤维的平均直径,所制备纤维最小平均直径可达5.3 μm,熔喷非织造布的最大拉伸强力为6.12 N,抗拉强度为2.16 MPa;经过热压工艺处理后,面密度为120 g/m2的LDPE非织造布在32 L/min流量下的过滤效率可达75%以上,平均过滤阻力为80 Pa。

关键词: 低密度聚乙烯, 熔喷技术, 超细纤维, 非织造布, 医用防护材料, 过滤性能

Abstract:

Objective Polyethylene (PE) nonwovens have excellent characteristics such as softness, corrosion resistance and hydrophobicity, and have broad application prospects in medical packaging, clothing, filtration and other fields. However, the traditional preparation process of high-performance polyethylene nonwovens is cumbersome, and the production process involves a large number of toxic solvents, and the production efficiency is low. Exploring the efficient preparation process of ultrafine polyethylene nonwovens has become an urgent research problem to be solved. Melt-blown technology is a common and efficient preparation method for microfiber, and the preparation of polyethylene microfiber by melt-blown method is rarely reported.

Method The preparation of low-density polyethylene(LDPE) melt-blown nonwovens was achieved by using a self-assembled melt-blown testing machine. The effects of different processes on the diameter of LDPE fibers were studied by controlling a single variable and adjusting the melt-blown process parameters in the experiment, including hot air temperature, hot air flow, mold temperature, melt flow and receiving distance. In addition, the filtration efficiency and tensile properties of LDPE melt-blown nonwovens were also studied.

Results The effects of melt-blown process parameters on the diameter of LDPE fibers were studied, including different hot air temperature, hot air flow rate, die temperature, receiving distance and melt flow rate. The results showed that increasing the hot air temperature, hot air flow rate and die temperature would reduce the average diameter of the fiber, and the average diameter of the fiber would increase after increasing the receiving distanc and melt flow rate. The minimum average diameter of the prepared fibers reached 5.3 μm, offering reference value for further preparation of polyethylene microfibers. The filtration performance of LDPE melt-blown nonwovens with different areal densities was explored, and the effect of areal density on LDPE filtration efficiency and filtration resistance was established, with the increase of areal density, the filtration efficiency and filtration resistance of melt-blown nonwovens showed a gradual upward trend. The filtration resistance was increased from 5.1 Pa to 20.9 Pa, and the filtration efficiency increased from 52.89% to 59.32%. After hot pressing treatment, the filtration efficiency of the 120 g/m2 nonwoven fabric reached more than 75% at a flow rate of 32 L/min, and the average filtration resistance is 80 Pa. The mechanical properties of LDPE melt-blown nonwovens with areal densities of 25 g/m2, 50 g/m2 and 120 g/m2 were investigated. The nonwovens with higher areal density were found to withstand greater tensile strength, and when the areal density is 25 g/m2, the LDPE melt-blown nonwovens demonstrated the highest elongation at break, up to 75%. When the areal density was 120 g/m2, the maximum pulling force and tensile strength of melt-blown nonwovens were the highest, reaching 6.12 N and 2.16 MPa, respectively.

Conclusion The melt-blown process can realize the efficient preparation of LDPE nonwovens, and the average diameter of the fiber decreases with the increase in hot air temperature, hot air flow rate and die temperature, and increases with the increase of receiving distance and melt flow, and the filtration efficiency, filtration resistance and tensile strength of melt-blown membrane increase with the increase of surface density of nonwoven. Process parameters would affect the microstructure and pore morphology of the fiber membrane, resulting in changes in mechanical properties and filtration properties. Furthermore, the microstructure of the melt-blown nonwoven can be changed by post-treatment processes such as hot pressing, and products with better performance can be obtained. So as to enhance the market potential and application value of polyethylene melt-blown nonwovens in the field of medical protection.

Key words: low-density polyethylene, melt-blown technology, microfiber, nonwoven, medical protective material, filtering performance

中图分类号: 

  • TS174.8

图1

LDPE熔喷非织造布的制备装置示意图"

图2

不同热风温度下熔喷非织造布的SEM照片"

图3

不同热风温度下的纤维平均直径"

图4

不同热风流量下的纤维平均直径"

图5

不同模头温度下的纤维平均直径"

图6

不同接收距离下的纤维平均直径"

图7

不同计量泵转速下的纤维平均直径"

图8

不同面密度熔喷非织造布的过滤效率与过滤阻力"

表1

熔喷非织造布的力学性能"

非织造布样品 最大拉伸
强力/N
抗拉强
度/MPa
断裂伸长
率/%
25 g/m2 PP 2.89 3.63 61
25 g/m2LDPE 1.20 1.35 75
50 g/m2LDPE 2.43 1.80 73
120 g/m2LDPE 6.12 2.16 39
[1] HIREMATH N, BHAT G. Melt blown polymeric nanofibers for medical applications: an overview[J]. Nanoscience and Technology, 2015, 2(1): 1-9.
[2] 胡声威, 钱鑫, 王素玉, 等. 熔喷聚丙烯原料性能及加工工艺研究[J]. 塑料工业, 2021, 49(7): 148-150.
HU Shengwei, QIAN Xin, WANG Suyu, et al. Study on properties and processing technology of melt-blow polypropylene raw material[J]. China Plastics Industry, 2021, 49(7): 148-150.
[3] HUFENUS R, YAN Y, DAUNER M, et al. Melt-spun fibers for textile applications[J]. Materials, 2020, 13(19): 4298-4329.
[4] HAN Mingchao, HE Hongwei, KONG Weikang, et al. High-performance electret and antibacterial polypropylene meltblown nonwoven materials doped with boehmite and ZnO nanoparticles for air filtration[J]. Fibers and Polymers, 2022, 23(7): 1947-1955.
[5] YU B, HAN J, SUN H, et al. The preparation and property of poly(lactic acid)/tourmaline blends and melt-blown nonwoven[J]. Polymer Composites, 2015, 36(2): 264-271.
[6] 张宇静, 陈连节, 张思东, 等. 高熔融指数聚乳酸母粒的制备及其熔喷材料的可纺性[J]. 纺织学报, 2023, 44(2): 55-62.
ZHANG Yujing, CHEN Lianjie, ZHANG Sidong, et al. Preparation of high melt index polylactic acid masterbatch and spinnability of its meltblown materials[J]. Journal of Textile Research, 2023, 44(2): 55-62.
[7] YU Y, SHIM E. Process-structure-property relationship of meltblown poly(styrene-ethylene/butylene-styrene) nonwovens[J]. Applied Polymer Science, 2021, 138(16): 50230-50241.
[8] 刘亚, 程可为, 赵义侠, 等. 热塑性聚氨酯熔喷非织造材料制备与性能[J]. 纺织学报, 2022, 43(11): 88-93.
doi: 10.13475/j.fzxb.20210802806
LIU Ya, CHENG Kewei, ZHAO Yixia, et al. Preparation and properties of thermoplastic polyurethane meltblowns[J]. Journal of Textile Research, 2022, 43(11): 88-93.
doi: 10.13475/j.fzxb.20210802806
[9] 高林娜, 吁苏云, 钟桂云, 等. 熔喷法乙烯-三氟氯乙烯共聚物膜的制备与性能研究[J]. 塑料工业, 2022, 50(3): 73-78.
GAO Linna, YU Suyun, ZHONG Guiyun, et al. Preparation and performance of melt-blown ethylene chlorotrifluoroethylene copolymer membrane[J]. China Plastics Industry, 2022, 50(3): 73-78.
[10] 杨潇东, 于斌, 孙辉, 等. 聚乙烯三氟氯乙烯熔喷非织造材料的制备及其过滤性能[J]. 纺织学报, 2023, 44(2): 19-26.
YANG Xiaodong, YU Bin, SUN Hui, et al. Preparation and filtration properties of polyethylene trifluoroethylene melt-blown nonwovens[J]. Journal of Textile Research, 2023, 44(2): 19-26.
[11] 王磊, 杨璧玲. 非织造布医用防护服及其发展趋势[J]. 纺织科技进展, 2021, 12: 1-4.
WANG Lei, YANG Biling. Non-vowen medical protective clothing and its development trend[J]. Progress in Textile Science & Technology, 2021, 12: 1-4.
[12] 夏云霞, 李磊, 罗章生, 等. 基于闪蒸法制备再生聚乙烯无纺布及其性能研究[J]. 中国塑料, 2022, 36(5): 14-18.
doi: 10.19491/j.issn.1001-9278.2022.05.003
XIA Yunxia, LI Lei, LUO Zhangsheng, et al. Preparation and properties of recycled polyethylene non-woven fabrics based on flash evaporation[J]. China Plastics, 2022, 36(5): 14-18.
doi: 10.19491/j.issn.1001-9278.2022.05.003
[13] GIVENS S R, GARDNER K H, RABOLT J F, et al. High-temperature electrospinning of polyethylene microfibers from Solution[J]. Macromolecules, 2007, 40(3): 608-610.
[14] LUISO S, HENRY J J, POURDEYHIMI B, et al. Fabrication and characterization of meltblown poly(viny-lidene difluoride) membranes[J]. ACS Applied Polymer Materials, 2020, 2(7): 2849-2857.
[15] JAFARI M, SHIM E, JOIJODE A. Fabrication of poly(lactic acid) filter media via the meltblowing process and their filtration performances: a comparative study with polypropylene meltblown[J]. Separation and Purification Technology, 2021. DOI: 10.1016/j.seppur.2020.118185.
[16] HODA N, MERT F, KARA F, et al. Effect of process parameters on fiber diameter and fiber distribution of melt-blown polypropylene microfibers produced by biax line[J]. Fibers and Polymers, 2021, 22(1): 285-293.
[17] XIAO Y, SAKIB N, YUE Z, et al. Study on the relationship between structure parameters and filtration performance of polypropylene meltblown nonwovens[J]. Autex Research Journal, 2020, 20(4): 366-371.
[18] BIER A M, REDEL M, SCHUBERT D W. Model to predict polymer fibre diameter during melt spinning[J]. Advances in Polymer Technology, 2023. DOI: 10.1155/2023/7983819.
[19] 于斌, 张旭阳, 孔瑾瑾, 等. DCD对PLA熔喷纤网结构和性能的影响[J]. 稀有金属材料与工程, 2016, 45(S1): 345-349.
YU Bin, ZHANG Xuyang, KONG Jinjin, et al. Influence of die-to-collector distance on structure and property of the PLA meltblowing web[J]. Rare Metal Materials and Engineering, 2016, 45(S1): 345-349.
[20] YESIL Y, BHAT G S. Structure and mechanical properties of polyethylene melt blown nonwovens[J]. International Journal of Clothing Science and Technology, 2016, 28(6): 780-793.
[21] 金关秀, 祝成炎. 孔隙形状对熔喷非织造布过滤品质的影响[J]. 上海纺织科技, 2018, 46(11): 15-18.
JIN Guanxiu, ZHU Chengyan. Effect of pore shape on the filter quality of melt-blown nonwoven[J]. Shanghai Textile Science & Technology, 2018, 46(11): 15-18.
[22] 张淑苹, 赵义侠, 钱子茂, 等. 熔喷非织造过滤材料驻极技术研究进展[J]. 毛纺科技, 2022, 50(5): 117-125.
ZHANG Shuping, ZHAO Yixia, QIAN Zimao, et al. Research progress on the electret technology of meltblown nonwoven filter materials[J]. Wool Textile Journal, 2022, 50(5): 117-125.
[23] WAN Caixia, CAO Tian, CHEN Xin, et al. Fabrication of polyethylene nanofibrous membranes by biaxial stretching[J]. Materials Today Communication, 2018, 17: 24-30.
[1] 肖渊, 童垚, 胡呈安, 武贤军, 杨磊鹏. 导电复合材料涂覆式全织物基柔性压阻传感器制备[J]. 纺织学报, 2024, 45(10): 152-160.
[2] 何雨静, 康建平, 赵坤伟, 何勇, 李佳逸, 谭昕. 袋式除尘用聚苯硫醚纤维的研究进展与展望[J]. 纺织学报, 2024, 45(10): 232-240.
[3] 肖宁宁, 陈智杰, 欧阳裕福, 孟金贵, 孙阳艺, 戚栋明. 超细纤维合成革用阻燃水性聚氨酯的制备及其性能[J]. 纺织学报, 2024, 45(09): 113-120.
[4] 卢道坤, 王仕飞, 董倩, 史纳蔓, 李思琦, 干露露, 周爽, 沙莎, 张如全, 罗磊. 基于MXene的导电织物构筑及其多功能应用[J]. 纺织学报, 2024, 45(09): 137-145.
[5] 朵永超, 宋兵, 张如全, 许秋歌, 钱晓明. 熔融双组分超细纤维成纤技术研究进展[J]. 纺织学报, 2024, 45(08): 54-64.
[6] 葛美彤, 董智佳, 丛洪莲, 丁玉琴. 凹凸点阵双面织物的结构与湿热管理评价[J]. 纺织学报, 2024, 45(07): 47-54.
[7] 柯文涛, 陈明, 郑淳天, 石小丽, 朱新生. 石蜡Pickering乳液及其微胶囊相变非织造材料的制备与性能[J]. 纺织学报, 2024, 45(07): 130-139.
[8] 张诗雨, 姚依婷, 董晨珊, 张如全, 杨红军, 顾绍金, 黄菁菁, 杜杰毫. 金属有机框架/聚丙烯纤维基复合材料对化学战剂模拟物的快速降解[J]. 纺织学报, 2024, 45(06): 134-141.
[9] 陈锦苗, 李纪伟, 陈萌, 宁新, 崔爱华, 王娜. 壳聚糖微纳米纤维复合抗菌空气滤材的制备及其性能[J]. 纺织学报, 2024, 45(05): 19-26.
[10] 贾琳, 董晓, 王西贤, 张海霞, 覃小红. 聚己内酯/MgO复合纳米纤维膜的制备及其性能[J]. 纺织学报, 2024, 45(04): 59-66.
[11] 李琛, 王冬, 仲鸿天, 董朋, 付少海. 超细纤维合成革含浸用水性聚氨酯的合成及其应用[J]. 纺织学报, 2024, 45(03): 129-136.
[12] 秦子轩, 张恒, 李晗, 翟倩, 甄琪, 钱晓明. 非溶相共混熔喷非织造技术的研究进展[J]. 纺织学报, 2024, 45(03): 219-226.
[13] 王镕琛, 张恒, 翟倩, 刘瑞焱, 黄鹏宇, 李霞, 甄琪, 崔景强. 聚乳酸超细纤维敷料的熔喷成形工艺及其快速导液特性[J]. 纺织学报, 2024, 45(01): 30-38.
[14] 孟娜, 王先锋, 李召岭, 俞建勇, 丁彬. 熔喷非织造布的驻极技术研究进展[J]. 纺织学报, 2023, 44(12): 225-232.
[15] 孙辉, 崔小港, 彭思伟, 丰江丽, 于斌. 聚乳酸/磁性金属有机框架材料复合熔喷布的制备及其空气过滤性能[J]. 纺织学报, 2023, 44(12): 26-34.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!