纺织学报 ›› 2024, Vol. 45 ›› Issue (09): 18-25.doi: 10.13475/j.fzxb.20230701901

• 纤维材料 • 上一篇    下一篇

柞蚕丝素纳米纤维温敏复合膜制备及其生物相容性

王勃翔1,2, 徐航丹2, 李佳1,2, 林杰1,2, 程德红1, 路艳华1()   

  1. 1.辽东学院 辽宁省功能纺织材料重点实验室, 辽宁 丹东 118003
    2.辽东学院 纺织服装学院, 辽宁 丹东 118003
  • 收稿日期:2023-07-10 修回日期:2024-01-13 出版日期:2024-09-15 发布日期:2024-09-15
  • 通讯作者: 路艳华(1963—),女,教授,博士。主要研究方向为功能纺织纤维材料。E-mail: yanhualu@aliyun.com
  • 作者简介:王勃翔(1989—),男,副教授,博士。主要研究方向为智能纤维。
  • 基金资助:
    辽宁省自然科学基金面上项目(2022-MS-360);辽宁省自然科学基金面上项目(2022-MS-358);辽宁省自然科学基金面上项目(2022-MS-357);辽宁省高校基本科研项目(LJKZ1123);辽宁省高校基本科研项目(LJKMZ20221750);辽宁省高校基本科研项目(JYTMS20230694);辽宁省高校基本科研项目(JYTQN2023179)

Preparation and biocompatibility of temperature-sensitive composite membrane of tussah silk fibroin nanofiber

WANG Boxiang1,2, XU Hangdan2, LI Jia1,2, LIN Jie1,2, CHENG Dehong1, LU Yanhua1()   

  1. 1. Liaoning Provincial Key Laboratory of Functional Textile Materials, Liaodong University, Dandong, Liaoning 118003, China
    2. School of Clothing and Textiles, Liaodong University, Dandong, Liaoning 118003, China
  • Received:2023-07-10 Revised:2024-01-13 Published:2024-09-15 Online:2024-09-15

摘要:

为探究柞蚕丝素蛋白温敏纳米纤维的水溶液静电纺丝工艺及其生物相容性,以烯丙基缩水甘油醚改性柞蚕丝素蛋白(ASF-AGE)为基材、N-异丙基丙烯酰胺(NIPAAm)为单体,通过原位溶液聚合和静电纺丝技术制备p (ASF-AGE-PNIPAAm)温敏纳米纤维膜,探究单体质量配比对纳米纤维膜形成的影响,分析纳米纤维膜的温度响应性、亲疏水性、体外降解及细胞相容情况。结果表明: ASF-AGE与NIPAAm以1∶1.5质量比进行聚合并经静电纺丝成功制备均匀连续的纳米纤维膜,平均直径为(452±120) nm;纳米纤维膜在32.7~33.4 ℃具有明显的温度响应性,在45 ℃具有显著的疏水性;纳米纤维膜在蛋白酶XIV中更易发生降解,降解28 d质量损失率可达39.6%;纳米纤维膜与小鼠脑微血管内皮细胞b End.3共培养未表现出细胞毒性,经5 d和7 d培养展现出良好的细胞相容性,有利于b End.3细胞增殖黏附。

关键词: 柞蚕丝素蛋白, 纳米纤维膜, N-异丙基丙烯酰胺, 温敏性, 生物相容性

Abstract:

Objective Antheraea pernyi silk fibroin (ASF)-based nanofibers have wide potential for biomaterial applications because it contains tripeptide sequences (Arg-Gly-Asp) known as RGD, whereby the integrin binding motif promotes the cell attachment. At present, electrospinning of regenerated ASF nanofibers is usually performed with volatile organic solvents, which may cause potential toxicity to the encapsulated cells, and residual organic solvents will cause safety hazards to cells and human bodies. Therefore, it is necessary to find a method for electrospinning of ASF in aqueous solutions to prepare nanofibers.

Method Novel ASF-based thermo-responsive hydrogel nanofibers were developed using aqueous electrospinning without any harsh organic solvent, and the employability of such nanofibers as an in-vitro platform for cell culture was explored. In order to study the spinning process and biocompatibility of temperature-sensitive nanofiber membrane of tussah silk fibroin, p (ASF-AGE-PNIPAAm) nanofiber membrane was prepared by in-situ solution polymerization and electrospinning, allyl glycidyl ether(AGE) modified tussah silk fibroin was used as base material (ASF-AGE) and N-isopropylacrylamide was used as monomer. The influence of monomer ratio on the formation of nanofiber membrane was investigated, and the temperature response, hydrophilicity, in-vitro degradation and cell compatibility of nanofiber membrane were analyzed.

Results ASF-based thermoresponsive nanofibers (p(ASF-AGE-NIPAAm)) were successfully manufactured by aqueous electrospinning with the polymerization of ASF and N-isopropylacrylamide (NIPAAm). The results showed that when ASF-AGE and NIPAAm were polymerized at a mass ratio of 1∶1.5, uniform and continuous nanofiber membrane with an average diameter of (452±120) nm were successfully prepared by electrospinning. The nanofibers exhibited good thermoresponsive characteristics that the lower critical solution temperature(LCST) was similar with PNIPAAm at about 32 ℃. The nanofiber membrane showed obvious temperature responsiveness at 32.7-33.4 ℃, and significant hydrophobicity at 45 ℃. The nanofiber membrane was prone to degrade in protease XIV, and the weight loss rate reached 39.6% after 28 d of degradation. Excellent cell proliferation, viability and morphology were demonstrated for b End.3 cells on the nanofibers by the characteristic methylthiazolyldiphenyl-tetrazolium bromide assay and confocal laser scanning microscope. It was not cytotoxic in co-culture of nanofiber membrane with mouse brain microvascular endothelial cells b End.3, and good cytocompatibility was found in co-culture of 5 d and 7 d. It was demonstrated that b End.3 cells grown on nanofibers showed improved cell adhesion, proliferation, and viability. The result indicated that the nanofiber membrane was beneficial to b End.3 cells adhesion and proliferation.

Conclusion Novel ASF-based thermoresponsive nanofibers were successfully fabricated by aqueous electrospinning for b End.3 cells culture. These nanofiber membranes have obvious thermoresponsive and the LCST is close to human body temperature. The utilization of a thermoresponsive polymer in the development of cell culture platforms allowed the dynamic control of cell adhesion and detachment in a desired manner by changing the temperature for targeted purposes. Furthermore, the nanofibers can be degraded in protease XIV solution, the degradation products of silk based materials are soluble peptides and free amino acids, which are easily metabolized and absorbed by the human body. By culturing brain microvascular endothelial cells in vitro, the nanofibers support cell adhesion and growth well. These degradable and thermoresponsive hydrogels will have potential applications for cells delivery device and tissue scaffold. This is a convenient and feasible approach to fabricate ASF-based functional nanofibers in the application of cell culture, presenting a valuable route for developing an ASF-based cell culture platform.

Key words: tussah silk fibroin, nanofiber membrane, N-isopropylacrylamide, thermosensitivity, biocompatibility

中图分类号: 

  • TS101.4

图1

ASF-AGE的合成机制"

表1

纺丝液制备组分"

样品
编号
ASF-AGE
体积/mL
NIPAAm
体积/mL
ASF-AGE与
NIPAAm质量比
NF-1 4.0 1.25 1∶0.25
NF-2 4.0 2.5 1∶0.5
NF-3 4.0 5.0 1∶1
NF-4 4.0 7.5 1∶1.5

图2

ASF-AGE与NIPAAm聚合机制及溶液静电纺丝"

图3

不同ASF-AGE与NIPAAm质量比纳米纤维膜的红外光谱图"

图4

不同ASF-AGE与NIPAAm质量比的纳米纤维膜SEM照片"

图5

不同ASF-AGE与NIPAAm质量比的纺丝液黏度和表面张力"

图6

纳米纤维膜的DSC曲线"

图7

不同温度纳米纤维膜水接触角时间依赖曲线"

图8

纳米纤维膜在PBS和蛋白酶XIV降解28 d的质量损失率"

图9

b End.3细胞在纳米纤维膜上的黏附增殖情况"

图10

b End.3细胞与纳米纤维共培养1~7 d的激光共聚焦显微镜照片"

[1] KISHIMOTO Y, MORIKAWA H, YAMANAKA S, et al. Electrospinning of silk fibroin from all aqueous solution at low concentration[J]. Materials Science and Engineering: C, 2017, 73: 498-506.
[2] SHAO W, HE J, SANG F, et al. Enhanced bone formation in electrospun poly (L-lactic-co-glycolic acid)-tussah silk fibroin ultrafine nanofiber scaffolds incorporated with graphene oxide[J]. Materials Science and Engineering: C, 2016, 62: 823-834.
[3] ZHANG X, TSUKADA M, MORIKAWA H, et al. Production of silk sericin/silk fibroin blend nano-sfibers[J]. Nanoscale Research Letters, 2011, 6: 510-510.
[4] LI X, MING J, NING X. Wet-spun conductive silk fibroin-polyaniline filaments prepared from a formic acid-shell solution[J]. Journal of Applied Polymer Science, 2019. DOI: 10.1002/app.47127.
[5] YONG L, XIA Y, LI J, et al. Fabrication and Properties of high-content keratin/poly (ethylene oxide) blend nanofibers using two-step cross-linking process[J]. Journal of Nanomaterials, 2015, 2015(10): 1-7.
[6] SERODIO R, SCHICKERT S L, COSTA-PINTO A R, et al. Ultrasound sonication prior to electrospinning tailors silk fibroin/PEO membranes for periodontal regeneration[J]. Materials Science and Engineering: C, 2019, 98: 969-981.
[7] ARAUJO T M, SINHA-RAY S, PEGORETTI A, et al. Electrospinning of a blend of a liquid crystalline polymer with poly(ethylene oxide): vectran nanofiber mats and their mechanical properties[J]. Journal of Materials Chemistry C, 2013. DOI: 10.1039/c2tc00048b.
[8] GADE S, LARRANETA E, DONNELLY R F, et al. Development of injectable thermoresponsive Cs-g-PNIPAAm hydrogel for intrascleral drug delivery of sunitinib malate for the posterior segment ocular disease, age-related macular degeneration[J]. Acta Ophthalmologica, 2022. DOI: 10.1111/j.1755-3768.2022.15542.
[9] XU X, SUN J, BING L, et al. Fractal features of dual temperature/pH-sensitive poly (N-isopropylacrylamide-co-acrylic acid) hydrogels and resultant effects on the controlled drug delivery performances[J]. European Polymer Journal, 2022. DOI: 10.1016/j.eurpolymj.2022.111203.
[10] TANG Z, AKIYAMA Y, OKANO T. Temperature-responsive polymer modified surface for cell sheet engineering[J]. Polymers 2012, 4, 1478-1498.
[11] 王勃翔, 刘丽, 李佳, 等. 烯丙基丝素蛋白温敏水凝胶的合成及性能研究[J]. 化工学报, 2020, 71(12):5821-5830.
doi: 10.11949/0438-1157.20200626
WANG Boxiang, LIU Li, LI Jia, et al. Synthesis and properties of thermosensitive hydrogel of allyl silk fibroin[J]. CIESC Journal, 2020, 71(12):5821-5830.
[12] NAKAGAWA Y, NAGAO K, TOCHIKUBO F. Interaction between negative corona discharge and droplet emission from liquid Taylor cone[J]. Journal of Physics, D. Applied Physics: A Europhysics Journal, 2021. DOI: 10.1088/1361-6463/abfce9.
[13] ALLEN A C B, BARONE E, CROSBY C O, et al. Electrospun poly (N-isopropyl acrylamide)/poly (caprolactone) fibers for the generation of anisotropic cell sheets[J]. Biomaterials Science, 2017, 5: 1661-1669.
[14] WANG B, XU H, LI J, et al. Degradable allyl Antheraea pernyi silk fibroin thermoresponsive hydrogels to support cell adhesion and growth[J]. RSC Advances, 2021, 11: 28401-28409.
[15] CAO Y, WANG B. Biodegradation of silk bio-materials[J]. International Journal of Molecular Science, 2009, 10: 1514-1524.
[1] 陈灿, 拖晓航, 王迎. 取向聚氨酯纳米纤维膜卷纱的制备及其力学性能[J]. 纺织学报, 2024, 45(08): 134-141.
[2] 钱洋, 张璐, 李晨阳, 王荣武. 静电纺海藻酸钠复合纳米纤维膜制备及其性能[J]. 纺织学报, 2024, 45(08): 18-25.
[3] 杨培芹, 潘志娟. 丁香酚/桑皮微纳米纤维膜的制备及其性能[J]. 纺织学报, 2024, 45(08): 72-80.
[4] 韩华, 胡安然, 孙艺文, 丁作伟, 李伟, 张彩云, 郭增革. 碘释放抗菌涂层棉织物的制备及其在伤口修复中的应用[J]. 纺织学报, 2024, 45(05): 113-120.
[5] 梁文静, 吴俊贤, 何崟, 刘皓. 基于复合纳米纤维膜的离子传感器制备及其性能[J]. 纺织学报, 2024, 45(04): 15-23.
[6] 戎成宝, 孙辉, 于斌. 银-铜双金属纳米粒子/聚乳酸复合纳米纤维膜的制备及其抗菌性能[J]. 纺织学报, 2024, 45(01): 48-55.
[7] 王鹏, 申佳锟, 陆银辉, 盛红梅, 王宗乾, 李长龙. 石墨相氮化碳/MXene/磷酸银/聚丙烯腈复合纳米纤维膜的制备及其光催化性能[J]. 纺织学报, 2023, 44(12): 10-16.
[8] 王汉琛, 吴嘉茵, 黄彪, 卢麒麟. 生物相容性纳米纤维素自愈合水凝胶的构建及其性能[J]. 纺织学报, 2023, 44(12): 17-25.
[9] 雷彩虹, 俞林双, 金万慧, 朱海霖, 陈建勇. 丝素蛋白/壳聚糖复合纤维膜的制备与应用[J]. 纺织学报, 2023, 44(11): 19-26.
[10] 张成成, 刘让同, 李淑静, 李亮, 刘淑萍. 聚左旋乳酸非溶剂挥发诱导成孔机制与纳米多孔纤维膜制备[J]. 纺织学报, 2023, 44(10): 16-23.
[11] 姚双双, 付少举, 张佩华, 孙秀丽. 再生丝素蛋白/聚乙烯醇共混取向纳米纤维膜的制备与性能[J]. 纺织学报, 2023, 44(09): 11-19.
[12] 王玉周, 周梦洁, 姜圆金, 陈家本, 李玥. 偕胺肟化聚丙烯腈纳米纤维膜的制备与油水乳液分离性能[J]. 纺织学报, 2023, 44(07): 42-49.
[13] 贾姣, 郑作保, 吴昊, 徐乐, 刘熙, 董凤春, 贾永堂. 静电纺聚合物复合金属有机框架功能纳米纤维膜的研究进展[J]. 纺织学报, 2023, 44(06): 215-224.
[14] 杜迅, 陈莉, 何劲, 李晓娜, 赵美奇. 具有伤口监测功能的比色传感纳米纤维膜的制备及其性能[J]. 纺织学报, 2023, 44(05): 70-76.
[15] 胡蝶飞, 王琰, 姚菊明, 祝国成. 纳米纤维复合结构空气过滤材料性能研究[J]. 纺织学报, 2023, 44(05): 77-83.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!