纺织学报 ›› 2024, Vol. 45 ›› Issue (09): 50-55.doi: 10.13475/j.fzxb.20230702401

• 纤维材料 • 上一篇    下一篇

固相聚合对萘环液晶聚芳酯结构与性能的影响

魏朋1,2(), 李志强1, 李娇娇1, 李俊慧1, 刘东1, 耿嘉骏1   

  1. 1.中原工学院 智能纺织与织物电子学院, 河南 郑州 450007
    2.先进纺织装备技术省部共建协同创新中心, 河南 郑州 450007
  • 收稿日期:2023-07-11 修回日期:2024-01-20 出版日期:2024-09-15 发布日期:2024-09-15
  • 作者简介:魏朋(1987—),男,副教授,博士。主要研究方向为高性能液晶高分子纤维。E-mail: appletree0322@163.com
  • 基金资助:
    国家自然科学基金项目(51803246);河南省高校科技创新人才支持计划资助项目(22HASTIT032);河南省高等学校青年骨干教师培养计划项目(2020GGJS140);中原工学院基本科研业务费专项资金资助项目(K2020YY005)

Influence of solid-state polymerization on structure and properties of naphthalene ring structure aromatic liquid crystal copolyester

WEI Peng1,2(), LI Zhiqiang1, LI Jiaojiao1, LI Junhui1, LIU Dong1, GENG Jiajun1   

  1. 1. College of Intelligent Textile and Fabric Electronics, Zhongyuan University of Technology, Zhengzhou, Henan 450007, China
    2. Collaborative Innovation Center of Advanced Textile Equipment and Technology by MOE and Henan Provincial Government, Zhengzhou, Henan 450007, China
  • Received:2023-07-11 Revised:2024-01-20 Published:2024-09-15 Online:2024-09-15

摘要:

为解决液晶聚芳酯熔融缩聚反应后期由于反应温度和熔体黏度过高导致的降解交联副反应以及成形加工困难等问题,以6-羟基-2-萘甲酸(HNA)、2,6-萘二羧酸(NDA)、对苯二甲酸(TA)、4,4'-二羟基联苯(BP)为原料,采用原位一锅熔融聚合法制备了低分子量萘环热致液晶聚芳酯,并对其进行固相聚合。通过差示扫描量热仪、热重分析仪、偏光显微镜、X射线衍射和熔融指数仪对固相聚合后的液晶聚芳酯结构与性能进行了测试。结果表明,液晶聚芳酯的熔融温度和结晶度受聚合时间和温度的影响较大,呈现出先增加后降低的变化趋势,但并不会改变聚芳酯的晶体结构,同样属于正交晶型。此外,固相聚合在温度305 ℃下反应12 h,液晶聚芳酯热学和结晶性能得到明显改善;高于此时间和温度时聚芳酯的熔点开始降低,热降解反应开始进行,热稳定性和结晶性能下降。

关键词: 热致液晶聚芳酯, 熔融聚合, 固相聚合, 热学性能, 晶体结构

Abstract:

Objective Degradation, cross-link side reaction and poor processing ability are caused by high reaction temperature and melt viscosity of liquid crystal copolyesters in the final stage of melt polycondensation. In order to solve such problems, low molecular weight of liquid crystal copolyesters was prepared by one-pot melting transesterification method. The influences of solid-state polymerization time and temperature on thermal properties, crystallization properties and melt index of liquid crystal copolyesters were investigated.

Method In this study, the low molecular weight liquid crystal copolyester derived from 6-hydroxy-2-naphthalene carboxylic acid (HNA), 2, 6-naphthalene dicarboxylic acid (NDA), terephthalic acid, 4,4'-dihydroxy biphenyl (BP) were prepared by in-situ one-pot melt polymerization method. After solid-state polymerization, the structure and properties of liquid crystal polyesters were analyzed by Differential scanning calorimeter, Thermogravimetric analyzer, polarized microscope, X-ray diffraction and melt index.

Results The melting temperature of liquid crystal copolyester (Tm) and the glass transition temperature (Tg) were found to increased and then decreased with the increase of polymerization time. Crystallization enthalpy ΔHc and melting enthalpy ΔHm reached the maximum after 12 h of polymerization, and were decreased gradually with the increase of solid-state polymerization time ΔHc and ΔHm. Clear marble and textured liquid crystal texture were still observed 8 h after solid-state polymerization, showing nematic liquid crystal behavior, but with the increase of polymerization time, birefringence and texture gradually got blurred. When the polymerization time was increased to 36 h, the crystal structure did not change, remaining in the state of orthogonality. The results showed that the phase transition temperature and crystallization rate of liquid crystal copolyesters were greatly affected by polymerization time and temperature. The crystallization performance of liquid crystal copolyesters was better when the polymerization temperature was 305 ℃ and the polymerization time was about 12 h. The initial degradation temperature of liquid crystal copolyesters after solid state polymerization was generally higher than that of the initial sample, and the temperature corresponding to the maximum mass loss was somewhat lower than that of the sample. The carbon residue of liquid crystal copolyesters at 700 ℃ remained between 42% and 44.5%, indicating that the molecular weight and thermal stability of liquid crystal copolyesters were improved during the polymerization process but the possibility of thermal degradation was increased by long-term high temperature polymerization. With the increase of polymerization time, the melt index at different polymerization temperatures began to decrease rapidly. When the polymerization temperature was 315 ℃, the melt index of copolyesters was decreased the fastest. After 24 h solid-state polymerization, the melt index of copolyesters did not change significantly. Considering that high molecular weight products were obtained under low energy consumption, 8-24 h solid-state polymerization time was appropriate.

Conclusion The structure and properties of liquid crystal copolyester are influenced by the operation parameters of solid-state polymerization, such as temperature, time, nitrogen flow rate and particle size. This research was focused on the influence of temperature and time on the thermal and crystallization properties of liquid crystal copolyester. Owing to the continued reaction of the terminal group, the molecular chain of liquid crystal copolyester after solid-state polymerization increases, the molecular weight increases, and the melting temperature, glass transition temperature and thermal stability are improved. However, after solid-state polymerization for more than 12 h and the temperature is higher than 305 ℃, the concentration of the reactive terminal group inside the particles decreases. When the molecular weight reaches the equilibrium limit, the melting point of the copolyester decreases gradually, and the degradation reaction of the molecular chain gradually dominates, and the thermal stability and crystallinity decrease. The results show that the thermal and crystalline properties of liquid crystal copolyesters are improved significantly after solid state polymerization at 305 ℃ for 12 h, which is conducive to its processing and application.

Key words: thermotropic liquid crystal copolyester, melt polymerization, solid state polymerization, thermal property, crystal structure

中图分类号: 

  • O632

图1

萘环结构液晶聚芳酯的合成路线"

表1

液晶聚芳酯在不同固相聚合时间和温度下的DSC数据"

固相聚合温度T/℃ 聚合时间t/h Tm/℃ Tg/℃ Tc/℃ ΔT/℃ ΔHc/(J·g-1) ΔHm/(J·g-1)
0 323.5 124.7 299.2 24.3 2.5 2.4
295 8 326.4 125.6 296.2 30.2 2.7 2.8
12 328.9 129.8 289.0 39.9 3.0 4.1
24 325.7 131.6 286.3 39.4 3.0 2.8
36 313.2 124.6 283.0 30.2 2.1 2.6
305 8 327.8 128.3 285.9 41.9 3.4 3.0
12 328.2 130.1 288.3 39.9 3.5 3.8
24 319.2 131.8 278.2 41.0 3.1 3.4
36 303.6 129.7 269.2 34.4 2.1 2.3
315 8 320.9 132.6 280.1 40.8 3.0 3.0
12 328.0 133.3 286.4 41.6 3.3 4.7
24 318.7 135.1 277.0 41.7 2.2 2.6
36 303.1 133.5 267.2 35.9 2.5 2.5

表2

液晶聚芳酯在不同固相聚合时间和温度下的TG数据"

固相
聚合温度
T/℃
聚合
时间
t/h
初始降解
温度/℃
最大质量
损失速率下
的温度/℃
700 ℃时
残炭量/%
0 475.2 505.2 44.5
295 8 475.4 505.4 42.4
12 474.0 503.1 43.8
24 476.4 503.4 43.1
36 477.7 502.7 43.9
305 8 480.8 505.8 43.8
12 475.5 504.0 43.7
24 479.2 504.7 44.4
36 476.9 504.4 43.8
315 8 475.7 501.7 43.9
12 475.3 503.3 43.5
24 479.8 503.3 44.4
36 476.7 504.7 44.3

图2

液晶聚芳酯的偏光图像(×500)"

图3

液晶聚芳酯在305 ℃时随聚合时间变化的X射线衍射图"

图4

液晶聚芳酯的晶胞参数a、b、c随聚合时间和温度的变化"

表3

液晶聚芳酯在不同固相聚合时间和温度下的X射线衍射结果"

固相
聚合温度
T/℃
聚合
时间
t/h
2θ/(°) d/nm 半峰宽/(°) Xc/%
0 19.34 0.46 0.65 34.10
295 8 19.46 0.45 0.64 39.14
12 19.33 0.46 0.66 39.33
24 19.47 0.45 0.65 34.73
36 19.38 0.46 0.65 34.22
305 8 19.44 0.45 0.64 36.20
12 19.39 0.46 0.66 38.49
24 19.46 0.45 0.69 32.87
36 19.41 0.46 0.64 32.94
315 8 19.38 0.46 0.64 36.82
12 19.33 0.46 0.68 38.34
24 19.43 0.46 0.66 34.65
36 19.25 0.46 0.69 31.27

图5

不同固相聚合时间和温度下聚芳酯的熔融指数"

[1] CHENG H K F, BASU T, SAHOO N G, et al. Current advances in the carbon nanotube/thermotropic main-chain liquid crystalline polymer nanocomposites and their blends[J]. Polymers, 2012, 4(2): 889-912.
[2] PAN X, CHI Z, CHENG D, et al. Solid-state polymerization of a liquid crystalline copolyester derived from 2,6-naphthalene dicarboxylic acid, terephthalic acid, 4-acetoxybenzoic acid and hydroquinone diacetate[J]. Journal of Macromolecular Science, Part B, 2007, 44(2): 249-259.
[3] STEINBORN-ROGULSKA I, ROKICKI G. Solid-state polycondensation (SSP) as a method to obtain high molecular weight polymers: part I: parameters influencing the SSP process[J]. Polimery, 2013, 58(1): 3-13.
[4] STEINBORN-ROGULSKA I, ROKICKI G. Solid-state polycondensation (SSP) as a method to obtain high molecular weight polymers: part II: synthesis of polylactide and polyglycolide via SSP[J]. Polimery, 2013, 58(2): 85-92.
[5] LI Liangjie, DUAN Rongtao, ZHANG Junbo, et al. Phosphorus-containing poly(ethylene terephthalate): solid-state polymerization and its sequential distribu-tion[J]. Industrial & Engineering Chemistry Research, 2013, 52(15): 5326-5333.
[6] WEI P, LOU H, YAN J, et al. Synthesis and properties of high performance aromatic thermotropic liquid crystal copolyesters based on naphthalene ring structure[J]. Polymer, 2021. DOI: 10.1016/j.polymer.2021.124472.
[7] XIAO C, ZHANG Y, WU S, et al. Study of the crystal structure of P(HBA/HNA)/PET blend fibers[J]. Journal of Applied Polymer Science, 2002, 83(2): 394-400.
[8] KIM J Y, KIM S H. In situ fibril formation of thermotropic liquid crystal polymer in polyesters blends[J]. Journal of Polymer Science Part B: Polymer Physics, 2005, 43(24): 3600-3610.
[9] KIM J Y, KIM S H. Influence of viscosity ratio on processing and morphology of thermotropic liquid crystal polymer-reinforced poly(ethylene 2,6-naphthalate) blends[J]. Polymer International, 2006, 55(4): 449-455.
[10] HUANG Hengzhen, CHEN Li, WANG Yuzhong. A kinked unit-containing thermotropic liquid crystalline copolyester with low glass transition temperature and broad phase transition temperature[J]. Journal of Polymer Science Part A: Polymer Chemistry, 2009, 47(18): 4703-4709.
[11] 李佳丽, 徐坤, 倪佳仁, 等. 基于Labview实现单晶X射线衍射精修[J]. 曲靖师范学院学报, 2021, 40(6): 6-11.
LI Jiali, XU Kun, NI Jiaren, et al. Realization of single crystal X-ray diffraction refinement based on Labview[J]. Journal of Qujing Normal University, 2021, 40(6): 6-11.
[12] 张杰男, 汪君洋, 吕迎春, 等. 锂电池研究中的X射线多晶衍射实验与分析方法综述[J]. 储能科学与技术, 2019, 8(3): 443-467.
doi: 10.12028/j.issn.2095-4239.2018.0212
ZHANG Jienan, WANG Junyang, LÜ Yingchun, et al. Experimental measurement and analysis methods of polycrystalline X-ray diffraction for lithium batteries[J]. Energy Storage Science and Technology, 2019, 8(3): 443-467.
doi: 10.12028/j.issn.2095-4239.2018.0212
[13] HOSHIRO H, ENDO R, SLOAN F E. Vectran®: super fiber from the thermotropic crystals of rigid-rod polymer[M]. High-Performance and Specialty Fibers, 2016: 171-190.
[14] HABENSCHUSS A, VARMA-NAIR M, KU KWON Y, et al. The phase diagram of poly (4-hydroxybenzoic acid) and poly (2,6-hydroxynaphthoic acid) and their copolymers from X-ray diffraction and thermal analysis[J]. Polymer, 2006, 47(7): 2369-2380.
[15] WILSON D J, VONK C G, WINDLE A H, et al. Diffraction measurements of crystalline morphology in a thermotropic random copolymer[J]. Polymer, 1993, 34(2): 227-237.
[16] 王燕萍, 夏于旻, 甘海啸, 等. 芳香族共聚酯的固相聚合和熔融纺丝[J]. 纺织学报, 2012, 33(6): 111-115.
WANG Yanping, XIA Yumin, GAN Haixiao, et al. Solid-phase polymerization and melt-spinning of aromatic copolyester[J]. Journal of Textile Research, 2012, 33(6): 111-115.
[1] 李龙龙, 魏朋, 吴萃霞, 闫金飞, 娄贺娟, 张一风, 夏于旻, 王燕萍, 王依民. 基于对羟基苯丙酸的生物基液晶共聚酯纤维的合成与性能[J]. 纺织学报, 2022, 43(01): 9-14.
[2] 蒋璐璐, 邓梦, 王云仪, 李俊. 气凝胶材料在消防服中的应用研究进展[J]. 纺织学报, 2021, 42(09): 187-194.
[3] 王瑞丰, 李敏, 田安丽, 王春霞, 付少海. 分散黄6GSL晶型与其分散体热稳定性的关系[J]. 纺织学报, 2021, 42(05): 96-102.
[4] 元伟, 姚勇波, 张玉梅, 王华平. 制备Lyocell纤维用纤维素浆粕的碱性酶处理工艺[J]. 纺织学报, 2020, 41(07): 1-8.
[5] 杨帆, 刘俊华, 边昂挺, 王燕萍, 钱琦渊, 倪建华, 夏于旻, 何勇, 王依民. 热处理对热致液晶聚芳酯纤维结构与性能的影响[J]. 纺织学报, 2019, 40(11): 9-12.
[6] 刘冰倩, 盛丹, 潘恒, 曹根阳. N,N-二甲基乙酰胺/氯化钙体系对热致液晶聚芳酯纤维结构及性能的影响[J]. 纺织学报, 2019, 40(04): 15-20.
[7] 李清文 赵静娜 张骁骅. 碳纳米管纤维的物理性能与宏量制备及其应用[J]. 纺织学报, 2018, 39(12): 145-151.
[8] 闫红芹 徐文正 严庆帅 郭棋盛. 预处理方法对丝瓜络纤维性能的影响[J]. 纺织学报, 2018, 39(12): 72-77.
[9] 杨莉 张艳艳 杨稳 苏瑞. 服用聚酰亚胺纤维织物的热学性能[J]. 纺织学报, 2017, 38(08): 62-67.
[10] 毛雪峰 钱杨 蒋佳莉 周邓飞 么丹阳 王秀华. 低熔点聚酰胺的制备与性能[J]. 纺织学报, 2016, 37(3): 6-10.
[11] 蔡薇琦 马崇启 阚永葭 杨金莲 李君丽 . 灰色聚类分析在织物热学性能评价中的应用[J]. 纺织学报, 2016, 37(11): 64-67.
[12] 吴清涛 王北福 姜洪涛 聂立宏. 超声时间对聚偏氟乙烯/SiO2平板膜性能和结构的影响[J]. 纺织学报, 2016, 37(07): 28-33.
[13] 王燕萍, 夏于旻, 甘海啸, 朱卫彪, 钦维民, 王依民. 芳香族共聚酯的固相聚合和熔融纺丝[J]. 纺织学报, 2012, 33(6): 111-115.
[14] 裔婷婷, 潘志娟. 静电纺再生加工对横纹金珠丝微观结构的影响[J]. 纺织学报, 2012, 33(4): 1-5.
[15] 夏鑫, 蒋淑冬, 魏取福, 李静. 溶剂对PVAc/SnO2杂化纳米纤维可纺性及热学性能的影响[J]. 纺织学报, 2011, 32(12): 1-5.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!