纺织学报 ›› 2024, Vol. 45 ›› Issue (06): 165-172.doi: 10.13475/j.fzxb.20230702601

• 服装工程 • 上一篇    下一篇

八达晕纹样结构参数化解构与再生设计

张素雅1, 崔荣荣1,2,3(), 王志成1,2,3, 蒋汶秦1, 徐平华1,2,3   

  1. 1.浙江理工大学 服装学院, 浙江 杭州 310018
    2.浙江省哲学社会科学重点培育研究基地, 浙江 杭州 310018
    3.浙江理工大学 数智风格与创意设计研究中心, 浙江 杭州 310018
  • 收稿日期:2023-07-13 修回日期:2024-02-26 出版日期:2024-06-15 发布日期:2024-06-15
  • 通讯作者: 崔荣荣(1971—),男,教授,博士。主要研究方向为传统服饰文化与时尚设计艺术。E-mail:cuirongrong-3369@zstu.edu.cn
  • 作者简介:张素雅(1999—),女,硕士生。主要研究方向为时尚智慧设计。
  • 基金资助:
    教育部哲学社会科学研究重大课题攻关项目(21JZD048);国家社科基金后期资助项目(23FYSB044);浙江省哲学社会科学规划课题资助项目(24LMJX09YB);浙江省研究生教育学会科研项目(2023-012);浙江理工大学优秀研究生学位论文培育基金(LW-YP2024038)

Parametric and regeneration design of Badayun patterns

ZHANG Suya1, CUI Rongrong1,2,3(), WANG Zhicheng1,2,3, JIANG Wenqin1, XU Pinghua1,2,3   

  1. 1. School of Fashion Design & Engineering, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, China
    2. Digital Intelligence Style and Creative Design Research Center, Hangzhou, Zhejiang 310018, Cina
    3. Key Research Center of Philosophy and Social Sciences, Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, China
  • Received:2023-07-13 Revised:2024-02-26 Published:2024-06-15 Online:2024-06-15

摘要:

为提升传统纹样创新设计效率,提出了一种参数化解构和再生设计方法。以八达晕纹样为例,在解读其艺术价值和形态结构的基础上,将其划分为填充、装饰、骨架3类元素,分别拆解为基本图元;各图元参数量化后,构建形态拟合公式,利用Rhino软件建立基础纹样模型;此基础上,通过调整不同参数,生成不同形制的纹样。并进一步,对生成纹样内部区域进行自动赋色。结果表明,基于八达晕纹样的参数化图案设计模型可衍化出不同风格效果的近似纹样,拓展纹样生成的丰富性;相较于传统设计方法,该方法实现由线稿、结构、赋色的一体化设计,为当代服饰纹样再生方法提供参考。

关键词: 八达晕纹样, 参数化, 设计方法, 解构, 再生设计, 图案数字复原

Abstract:

Objective Traditional patterns possess rich cultural connotations and unique aesthetic characteristics. This study aims to reinterpret and recreate the morphological composition of traditional patterns, injecting them with a sense of contemporaneity and innovation. By doing so, it seeks to infuse contemporary designs with distinctive artistic charm and provide consumers with diverse choices and cultural experiences. Currently, researchers primarily focus on the cultural connotations and formal composition of patterns, resorting to manual drawing for their reinterpretation, while lacking applications for rapid digital generation. To enhance the efficiency of innovative design for traditional patterns, a parametric deconstruction and regeneration method is proposed, enabling the rapid generation of pattern forms and color variations.

Method This study focused on the Badayun patterns, analyzing its artistic value and morphological structure. The patterns were divided into three categories, i.e., filling, decoration, and skeleton, which were further deconstructed into basic graphical elements. By quantifying the parameters of each element, a morphological fitting formula was constructed. Modeling was then carried out using Rhino software and its Grasshopper plugin to establish a foundational pattern model. The model included the establishment of pattern deconstruction, primitive library, parameter library, rule library, and parametric expression and recombination, which eventually formed patterns with different shapes and parameters. Furthermore, color extraction and clustering algorithms were employed to extract and cluster colors from different scenarios, resulting in diverse color schemes. Additionally, automatic coloring was applied to the interior regions of the generated patterns.

Results By combining traditional patterns and parametric modeling techniques, this study presented a parameterized deconstruction and regeneration method based on the Badayun pattern. The method successfully achieved the parameterized regeneration of traditional patterns with different forms and color styles. Using the floral element of the Badayun patterns as an example, the element was deconstructed parametrically to generate locally varying graphical effects under different parameters. Furthermore, an improved binary K-means adaptive clustering algorithm was employed to extract color factors from samples, yielding color analysis charts of typical Badayun patterns from different periods. It included the main colors of the Badayun patterns in the Song, Ming, and Qing dynasties, the RGB values of the corresponding main colors in different periods, and the color proportions of different colors in the overall pattern. Based on the generated line drawings of patterns in different forms, an automatic transfer coloring algorithm is utilized to derive various coloring effects for the same pattern. The well-designed Badayun patterns could be applied in multiple fields and transformed into product textures through a parametric platform, facilitating aesthetic dissemination and transforming functional utility in various products. It formed a new way of transforming the qualitative expression of pattern regeneration design into quantitative expression, which could quickly generate a large number of traditional pattern design schemes and effectively improve the design efficiency.

Conclusion This paper proposes a parametric model-based design method for Badayun patterns, which can generate different styles of patterns according to different parameter settings. The method uses computer technology to achieve an integrated design of line drawing, structure, and color assignment, which can quickly and flexibly adjust and control the form and style of the patterns, compared to the traditional design method. The method improves the design efficiency and creativity. Through case analyses, the paper demonstrates the application value of the method in garment pattern regeneration design and graphic design in the digital era. The parametric model-based design method for decorated lattice patterns provides an effective technical means for the regeneration and innovation of traditional patterns, and a new entry point for graphic design in the digital era.

Key words: Badayun pattern, parametric, design method, deconstruction, regeneration

中图分类号: 

  • TS941.2

图1

宋明清时期八达晕纹样"

表1

宋明清时期八达晕纹样典型特征"

朝代 骨架元素 装饰纹样 填充纹样
圆形、方形、菱形线性结构 圆形、方形、菱形线性结构 圆形、方形、菱形线性结构
如意纹与写生花卉纹组合 宝相花纹 “卍、寿、福、喜、贵”等文字纹
铜钱纹“卍”字纹等几何纹样 简单的写生花卉纹、几何纹样 较为复杂的写生花卉纹、动物、几何纹样

图2

八达晕纹样线稿图"

图3

B区域图元解析图"

图4

八达晕纹样解构过程"

图5

图形参数化设计路径"

图6

不同参数下的局部图元复变效果"

图7

参数化图元组合示例"

图8

同一纹样不同赋色效果"

表2

八达晕纹样色彩解析图"

朝代 色彩占比 RGB数值 色彩特征
宋代 0.372 9;0.333 6;
0.168 9;0.081 8;0.042 8
(249,247,248);(80,73,96);
(129,114,134);(164,141,160);(191,167,186)
清淡雅致
明代 0.391 6;0.258 1;
0.213 5;0.120 9;0.015 8
(253,248,248);(196,120,133);
(238,108,122);(239,175,181);(229,146,154)
加以点缀的金币堂
皇的富丽风格
清代 0.361 2;0.296 1;
0.212 7;0.094 8;0.035 2
(189,84,100);(168,224,96);
(133,226,185);(27,176,141);(8,130,181)
繁花似锦

图9

纹样再生应用示例"

图10

参数化肌理平面与立体图"

[1] 陶晨, 段亚峰, 徐蓉蓉, 等. 蓝印花布纹样建模与重构[J]. 纺织学报, 2019, 40(3):153-159.
TAO Chen, DUAN Yafeng, XU Rongrong, et al. Modeling and reconstruction of blue calico patterns[J]. Journal of Textile Research, 2019, 40(3):153-159.
[2] 赵海英, 解光鹏, 高子惠. 基于数学规则的龟背纹自动生成方法[J]. 北京邮电大学学报, 2022, 45(4):110-115.
doi: 10.13190/j.jbupt.2021-100
ZHAO Haiying, XIE Guangpeng, GAO Zihui. Automatic generation method of turtle back pattern based on mathematical rules[J]. Journal of Beijing University of Posts and Telecommunications, 2022, 45(4):110-115.
doi: 10.13190/j.jbupt.2021-100
[3] LIU E, LIU L, WANG J, et al. Int-Papercut: an intelligent pattern generation with papercut style based on convolutional neural network[C]// 2020 15th IEEE Conference on Industrial Electronics and Applica-tions (ICIEA). Kristiansand: IEEE, 2020: 59-67.
[4] SARIN A. The kolam drawing: a point lattice system[J]. Design Issues, 2022, 38 (3): 34-54.
[5] ALANI M W. Algorithmic investigation of the actual and virtual design space of historic hexagonal-based islamic patterns[J]. International Journal of Architectural Computing, 2018, 16(1):34-57.
[6] 李叶红, 吴洪. 传统“八达晕”图案的多元化创新设计研究[J]. 丝绸, 2022, 59(4):102-109.
LI Yehong, WU Hong. Research on diversified innovation and design of traditional "Badayun pattern[J]. Journal of of Silk, 2022, 59(4):102-109.
[7] 张玉杰, 李欣华. 八答晕纹样研究与现代设计传播平台构建[J]. 丝绸, 2021, 58(5):130-139.
ZHANG Yujie, LI Xinhua. A study on Badayun patterns and modern design communication platform construction[J]. Journal of Silk, 2021, 58(5):130-139.
[8] 邓翔鹏, 贾荣林. 中国传统服饰纹样的程式与秩序[J]. 艺术设计研究, 2022(5):38-43.
DENG Xiangpeng, JIA Ronglin. The stylization and order of chinese traditional costume pattern[J]. Art and Design Research, 2022(5):38-43.
[9] 顾春华. 古书画装裱中八达晕锦图案的研究与设计[J]. 丝绸, 2013, 50(8):36-42.
GU Chunhua. Study and design of badayun brocadpattern used for mounting traditional chinese calligraphy and painting[J]. Journal of Silk, 2013, 50(8):36-42.
[10] 梁惠娥, 胥筝筝, 崔荣荣. 近代汉族民间服饰几何纹样形式的流变与特征[J]. 纺织学报, 2011, 32(7):122-126.
LIANG Hui'e, XU Zhengzheng, CUI Rongrong. Variationsand features of geometric patterns of Han folk clothes in neoteric China[J]. Journal of Textile Research, 2011, 32(7):122-126.
[11] 崔荣荣. 中国传统纺织服饰图案研究述评及价值阐释[J]. 包装工程, 2022, 43(6):11-23.
CUI Rongrong. Chinese costume culture and its value in the new era[J]. Packaging Engineering, 2022, 43(6):11-23.
[12] 崔荣荣. “中国风格”时尚设计体系建构及理论阐释[J]. 上海交通大学学报(哲学社会科学版), 2023, 31(4):66-77.
CUI Rongrong. Construction and theoretical lnterpretation of a "Chinese style" fashion design sys-tem[J]. Journal of FSJTU(Philosophy and Social Sciences), 2023, 31(4):66-77.
[13] 陈越, 吴又进, 王晨. 宋锦名称考[J]. 中国科技史杂志, 2018, 39(4):403-413.
CHEN Yue, WU Youjin, WANG Chen. The research on the traditional craft of song brocade[J]. The Chinese Journal for the History of Science and Technology, 2018, 39(4):403-413.
[14] CAETANO I, SANTOS L, LEITÃO A. Computational design in architecture: defining parametric, generative, and algorithmic design[J]. Frontiers of Architectural Research, 2020, 9(2):287-300.
doi: 10.1016/j.foar.2019.12.008
[15] OXMAN R. Thinking difference: theories and models of parametric design thinking[J]. Design Studies, 2017,52: 4-39.
[16] ABUALIGAH L, DIABAT A. A comprehensive survey of the Grasshopper optimization algorithm: results, variants, and applications[J]. Neural Comput & Applic, 2020,32:15533-15556.
[17] 殷晓晨, 刘勇, 王娜, 等. 肌理韵律的参数化实现[J]. 包装工程, 2022, 43(6):176-185.
YIN Xiaochen, LIU Yong, WANG Na, et al. Parametric realization of texture rhythm[J]. Packaging Engineering, 2022, 43(6):176-185.
[18] RAN J, LIU H, LUO J. The color matching design based on polynomial regression[J]. Textile Research Journal, 2022, 92(7/8):1235-1245.
[19] JIA J, XU P, SUN X, et al. Automatic coloration of pattern based on color parsing of Sung porcelain[J]. Textile Research Journal, 2022, 92(23/24):5066-5079.
[20] WANG Y, LI X, ZHANG J, et al. Intelligent color matching method that integrates visual aesthetics based on eye-tracking technology[C]// Proceedings of the 2020 4th International Conference on Computer Science and Artificial Intelligence (CSAI 2020). New York: ACM, 2020: 108-112.
[21] 徐明慧, 徐平华, 韦秋菊, 等. 基于网络关系模型的品牌女装配色解析[J]. 纺织学报, 2021, 42(11):137-142.
doi: 10.13475/j.fzxb.20210100207
XU Minghui, XU Pinghua, WEI Qiuju, et al. Color parsing of female brand clothing based on nexus network modeling[J]. Journal of Textile Research, 2021, 42 (11):137-142.
doi: 10.13475/j.fzxb.20210100207
[22] WANG Y, LI X, ZHANG J, et al. Intelligent color matching of clothing based on deep learning[C]// Proceedings of the 2018 International Conference on Artificial Intelligence and Big Data (ICAIBD 2018). New York: ACM, 2018: 1-5.
[23] 贾静, 曹竟文, 徐平华, 等. 基于京剧脸谱意象色彩的服饰纹样自动配色[J]. 纺织学报, 2022, 43(12):160-166.
doi: 10.13475/j.fzxb.20211111307
JIA Jing, CAO Jingwen, XU Pinghua, et al. Automatic coloration of clothing pattern based on color parsing of peking opera masks[J]. Journal of Textile Research, 2022, 43 (12): 160-166.
doi: 10.13475/j.fzxb.20211111307
[1] 王一品, 李小辉. 服装褶皱形态的参数化表征方法[J]. 纺织学报, 2024, 45(06): 149-154.
[2] 李玉贤, 巫晓雯, 吴光军, 丛洪莲. 针织毛衫版片的参数化设计模型与实现[J]. 纺织学报, 2023, 44(09): 168-174.
[3] 周艳红, 江红霞, 陈玲. 基于AutoCAD参数化中式嫁衣样板的自动生成[J]. 纺织学报, 2022, 43(09): 175-181.
[4] 雷鸽, 李小辉. 数字化服装结构设计技术的研究进展[J]. 纺织学报, 2022, 43(04): 203-209.
[5] 王迪, 柯莹, 王宏付. Voronoi图形在参数化服装造型构建中的应用[J]. 纺织学报, 2021, 42(12): 131-137.
[6] 凌雅丽, 朱凌轩, 邵晓煊, 李泽辉, 钟安华. 亚洲男士西服基本纸样自动生成系统的建立[J]. 纺织学报, 2020, 41(09): 108-113.
[7] 李涛, 杜磊, 黄振华, 蒋玉萍, 邹奉元. 服装款式图识别与样板转换技术研究进展[J]. 纺织学报, 2020, 41(08): 145-151.
[8] 陈咪, 叶勤文, 张皋鹏. 斜裁裙参数化结构模型的构建[J]. 纺织学报, 2020, 41(07): 135-140.
[9] 娄少红. 基于AutoCAD参数化功能的A型裙样板自动化生成[J]. 纺织学报, 2020, 41(01): 131-138.
[10] 王旭, 杜增锋, 王翠娥, 倪庆清, 刘新华. 贯穿正交机织物结构的参数化三维建模[J]. 纺织学报, 2019, 40(11): 57-63.
[11] 张芳芳, 段永川. 二维三轴编织复合材料预压单胞模型建立及其弹性规律数值预测[J]. 纺织学报, 2019, 40(10): 85-91.
[12] 娄少红. 双圆弧的图解及其在衣缝轮廓线设计中的应用[J]. 纺织学报, 2019, 40(09): 150-158.
[13] 叶勤文, 张皋鹏. 基于AutoCAD参数化的个性化服装纸样生成[J]. 纺织学报, 2019, 40(04): 103-110.
[14] 张伶俐, 张皋鹏. 应用MatLab的服装纸样参数化平面制版[J]. 纺织学报, 2019, 40(01): 130-135.
[15] 沈奕君 张婷婷 柯莹 王宏付. 三维参数化技术在构建现代服装新形态中的应用[J]. 纺织学报, 2018, 39(12): 118-123.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!