纺织学报 ›› 2024, Vol. 45 ›› Issue (02): 1-10.doi: 10.13475/j.fzxb.20230704801

• 纤维材料 •    下一篇

仿生竹节纤维基加湿材料的叠层设计及其导湿快干性能

翟倩1, 张恒1(), 赵珂1, 朱文辉1, 甄琪2, 崔景强3   

  1. 1.中原工学院 纺织学院, 河南 郑州 451191
    2.中原工学院 服装学院, 河南 郑州 451191
    3.河南驼人医疗器械集团有限公司, 河南 新乡 453400
  • 收稿日期:2023-07-19 修回日期:2023-11-02 出版日期:2024-02-15 发布日期:2024-03-29
  • 通讯作者: 张恒(1986—),男,副教授,博士。主要研究方向为新型非织造材料的加工技术及其功能性应用。E-mail:m-esp@163.com
  • 作者简介:翟倩(1999—),女,硕士生。主要研究方向为新型非织造成形技术。
  • 基金资助:
    国家自然科学基金项目(52003306);河南省高校科技创新人才支持计划资助项目(24HASTIT011);河南省高等学校重点科研项目(23A540003);河南省重大科技专项项目(221100310500);河南省重大科技专项项目(231100320200);中原工学院研究生科研创新计划项目(YKY2023ZK02);大学生创新创业训练计划项目(202310465015)

Laminated design and water quick-drying performance of biomimetic bamboo-tube fibrous humidifying materials

ZHAI Qian1, ZHANG Heng1(), ZHAO Ke1, ZHU Wenhui1, ZHEN Qi2, CUI Jingqiang3   

  1. 1. College of Textiles, Zhongyuan University of Technology, Zhengzhou, Henan 451191, China
    2. College of Fashion Technology, Zhongyuan University of Technology, Zhengzhou, Henan 451191, China
    3. Henan Tuoren Medical Device Co., Ltd., Xinxiang, Henan 453400, China
  • Received:2023-07-19 Revised:2023-11-02 Published:2024-02-15 Online:2024-03-29

摘要:

为开发兼具快速导液能力和一定抗拉强度的新型纤维基加湿芯,利用熔喷原位牵伸工艺制备的高定向排列聚乳酸(PLA)微纳米纤维材料与大孔隙粘胶纤维材料进行叠层复合,得到筒状纤维集合体,并对其形貌特征、吸湿速率、干燥速率以及力学性能等进行表征与测试。结果表明:筒状纤维集合体表现出类竹节形貌的层状定向微孔结构,密度为1.1~1.8 g/cm3;受益于纤维平均直径和密度的有效调控,吸湿速率和干燥速率分别增加到112.4 mg/s 和1.03 mL/h,同时拉伸断裂强力保持在255.2 N以上。仿生竹节纤维基加湿材料样品在实际使用过程中的加湿量为39 mL/h,既可作为高性能纤维基加湿芯用于室内微环境湿度调节,又可为高导液纤维材料的功能性结构设计和绿色制备提供参考。

关键词: 聚乳酸, 熔喷, 非织造, 仿生竹节, 导湿快干, 加湿芯, 粘胶

Abstract:

Objective The dry indoor environment causes non-negligible impact on human health. The permeable evaporative humidifier with humidifying core as liquid guiding tunnel showed some positive effect on the indoor humidity management. This paper reports research on a type of humidifier material made following the bionic bamboo structure, and discusses the influence of the design of this material on the sample water conduction and fast drying performance, aiming for improvement of environmental protection by presenting an efficient humidifier inner core.

Method In this study, PLA micro-nano fiber fabric was prepared by hydrophilic modification of PLA with sodium secondary alkyl sulfonate (SAS) as the main raw material. Viscose fiber was prepared into viscose fiber layer (CEL) by carding process, and the hot-rolled PLA/CEL nonwoven composite was wound to obtain the fiber wiener humidification material. The samples were characterized by Fourier infrared spectrometer(FT-IR) and scanning electron microscope. In addition, liquid contact angle measuring instrument, drying rate tester, electronic fabric strength tester and self-built instrument were used to study the water conduction fast drying characteristics and physical and mechanical properties of the samples.

Results In terms of micro-morphology, the biomimetic bamboo-tube fibrous humidification material has a continuous or quasi-continuous layered micropore distribution structure parallel to the length direction, providing power for the directional transmission of liquid, wherein the biomimetic bamboo-tube fibrous laminated structure is loose inside and tight outside to provide the basis for the high-speed transmission of liquid. The increase of wind pressure reduced the fiber diameter distribution and pore size distribution in the sample, leading to a high-quality porous structure for efficient liquid transport. FT-IR test showed that the infrared spectra of C—O—C vibration absorption (1 181 cm-1) and C—O tensile (1 081 cm-1) peaks were enhanced after SAS addition, and the liquid contact angle of the sample surface was significantly changed, indicating that SAS successfully improved the hydrophilicity of PLA micro-nano fiber fabric. On the other hand, appropriate changes of melt blowing air pressure and sample density change had a certain optimization effect on the water conduction and quick drying characteristics of the fibrous humidifying materials. The experimental results showed that when the melt-blowing air pressure was 36 kPa and the simple density was 1.1 g/cm3, the liquid absorption rate and drying rate of the sample were the best, which were 112.4 mg/s and 1.03 mL/h, respectively. Compared with the sample density of 1.8 g/cm3, the liquid absorption rate and drying rate are increased by 55.2% and 51.5%. At this time, the tensile breaking strength of the sample reached 255.2 N, and the breaking strength decreased by 10.8% compared with that of the crimp density of 1.8 g/cm3. When the air pressure increased from 24 kPa to 40 kPa, the liquid absorption rate increased from 80.1 mg/s to 108.4 mg/s, representing a 26.1% increases. Drying rate increased by 21.1% from 0.57 mL/h to 0.69 mL/h, and the tensile breaking strength increased by 32.1% from 262.2 N to 346.4 N. The bionic bamboo structure is conductive to the improvement of the water conduction and fast drying performance of the fiber wiener humidification material, which can meet the application requirements of the humidifier.

Conclusion The humidifying material with biomimetic bamboo-tube joint structure prepared by lamination design has a wide development prospect in the field of water conduction and rapid drying. Among them, polylactic acid, as a bio-based material, has excellent antibacterial and mildew resistance properties, which is in line with the concept of green environmental protection development. Moreover, by changing the porous structure and lamination process of the fiber humidifier material, the water-conducting and quick-drying ability of the sample is further regulated, which provides references and examples for the structural design and green preparation of the high-performance fiber humidifier core.

Key words: polylactic acid, melt blowing, nonwoven, biomimetic bamboo-tube, water quickly dry, humidifying core, viscose fiber

中图分类号: 

  • TS172

图1

仿生竹节纤维基加湿材料的叠层复合制备流程示意图"

图2

竹节及仿生竹节纤维基加湿材料的形貌"

图3

PLA微纳米纤维材料的结构特征"

图4

PLA微纳米纤维的红外光谱图"

图5

样品的动态接触角"

图6

仿生竹节纤维基加湿材料样品的吸液性能"

图7

仿生竹节纤维基加湿材料样品的持液率和保液率"

图8

仿生竹节纤维基加湿材料样品的干燥性能"

图9

仿生竹节纤维基加湿材料样品的力学性能"

图10

仿生竹节纤维基加湿材料的应用场景图"

[1] JO Suyoung, CHO Hyejin, JEONG Jaeweon. Humidification performance of hollow-fiber membrane humidifier for air-conditioning applications[J]. Applied Thermal Engineering, 2023. DOI:10.1016/J.APPLTHERMALE-NG.2023.120335.
[2] GUO Kangqi, QIAN Hua, LIU Fan, et al. The impact of using portable humidifiers on airborne particles dispersion in indoor environment[J]. Journal of Building Engineering, 2021. DOI:10.1016/J.JOBE.2021.103147.
[3] CHEN Jingxiu, MAI Jianzhang, WANG Chao, et al. Biomimetic aligned micro-/nanofibrous composite membranes with ultrafast water transport and evaporation for efficient indoor humidification[J]. ACS Applied Materials & Interfaces, 2022, 14(1): 1983-1993.
[4] CHEN Yiming, LI Shujing, LI Xinlin, et al. Liquid transport and real-time dye purification via lotus petiole-inspired long-range-ordered anisotropic cellulose nanofibril aerogels[J]. ACS Nano, 2021.DOI:10.10211acsnano.1C10093.
[5] XU Zhicheng, RAN Xueqin, ZHANG Zhijie, et al. Designing a solar interfacial evaporator based on tree structures for great coordination of water transport and salt rejection[J]. Materials Horizons, 2023(5):1737-1744.
[6] YUAN Jing, CHEN Qi, FEI Benhua. Different characteristics in the hygroscopicity of the graded hierarchical bamboo structure[J]. Industrial Crops & Products, 2022. DOI:10.1016/J.INDCROP.2021.114333.
[7] CHEN Yiming, ZHOU Lijie, CHEN Lian, et al. Anisotropic nanocellulose aerogels with ordered structures fabricated by directional freeze-drying for fast liquid transport[J]. Cellulose, 2019, 26(11):6653-6667.
doi: 10.1007/s10570-019-02557-z
[8] LIU Donglei, HAN Jiaxin, ZHUANG Xijing, et al. Evaluation of mechanical properties and biocompatibility of three-layer PCL/PLLA small-diameter vascular graft with pore diameter gradient[J]. European Polymer Journal, 2023. DOI:10.1016/J.EURPOLYMJ.2023.111864.
[9] WANG Xianfeng, HUANG Zhan, MIAO Dongyang, et al. Biomimetic fibrous murray membranes with ultrafast water transport and evaporation for smart moisture-wicking fabrics[J]. ACS Nano, 2019. DOI:10.1021/acsnano.8b08242.
[10] HELMUT Cölfen. Bamboo nodes show nature's wisdom[J]. National Science Review, 2023. DOI:10.1093/NSR/NWAC270.
[11] CHEN Feng, BA Qixin, LU Wenchao, et al. Preparation of combined oleophobic fibre filters with pore size gradients and their high-efficiency removal of oil mist droplets[J]. Separation and Purification Technology, 2022. DOI:10.1016/J.SEPPUR.2022.122653.
[12] CHEN Lixia, AHMED Babaraijaz, HUANG Gang, et al. Moisture wicking textiles with hydrophilic oriented polyacrylonitrile layer: enabling ultrafast directional water transport[J]. Journal of Colloid and Interface Science, 2023: 200-209.
[13] GUO Feng, HAN Rizheng, YING Jishan, et al. Bioinspired polymeric heart valves derived from polyurethane and natural cellulose fibers[J]. Journal of Materials Science & Technology, 2023:178-187.
[14] 朱斐超, 张宇静, 张强, 等. 聚乳酸基生物可降解熔喷非织造材料的研究进展与展望[J]. 纺织学报, 2022, 43(1):49-57.
ZHU Feichao, ZHANG Yujing, ZHANG Qiang, et al. Research progress and prospect on biodegradable polylactic acid-based melt-blown nonwovens[J]. Journal of Textile Research, 2022, 43(1):49-57.
[15] ZHAN Lei, WANG Lingtian, DENG Jixia, et al. Enhanced cellular infiltration of tissue-engineered scaffolds fabricated by PLLA nanogrooved micro-fibers[J]. Nano Research, 2023, 16:1614-1625.
doi: 10.1007/s12274-022-4838-9
[16] 孙焕惟, 张恒, 崔景强, 等. 聚乳酸非织造材料的后牵伸辅助熔喷成形工艺及其力学性能[J]. 纺织学报, 2022, 43(6):86-93.
SUN Huanwei, ZHANG Heng, CUI Jingqiang, et al. Preparation and mechanical properties of polylactic acid nonwovens via post-drafting assisted melt blown process[J]. Journal of Textile Research, 2022, 43(6):86-93.
doi: 10.1177/004051757304300205
[17] ZHAO Yinuo, LI Wenhui, ZHAN Shiyuan, et al. Breakthrough pressure of oil displacement by water through the ultra-narrow kerogen pore throat from the Young-Laplace equation and molecular dynamic simulations[J]. Physical Chemistry Chemical Physics: PCCP, 2022, 24(28): 17195-17209.
doi: 10.1039/D2CP01643E
[18] 李亮, 裴斐斐, 刘淑萍, 等. 聚乳酸纳米纤维基载药敷料的制备与表征[J]. 纺织学报, 2022, 43(11):1-8.
LI Liang, PEI Feifei, LIU Shuping, et al. Preparation and characterization of polylactic acid nanofiber drug loaded medical dressings[J]. Journal of Textile Research, 2022, 43(11):1-8.
doi: 10.1177/004051757304300101
[19] LI Ziheng, WANG Mingxin, CHEN Lumin, et al. Highly efficient carbonization of nanocellulose to biocarbon aerogels with ultrahigh light absorption efficiency and evaporation rate as bifunctional solar/electric driven steam generator for water purification[J]. Sustainable Materials and Technologies, 2023. DOI: 10.1016/J.SUSMAT.2023.E00649.
[20] NEUNKIRCHEN Stefan, BLÖßL Yannick, SCHLEDJEWSKI Ralf. A porous capillary tube approach for textile saturation[J]. Composites Science and Technology, 2022. DOI:10.1016/J.COMPSCITECH.2022.109450.
[21] QI Shumao, XU Lu, SHAO Haiyang, et al. Cross-linked HMO/PVA nanofiber mats for efficient lithium extraction from Salt-lake[J]. Separation and Purification Technology, 2023. DOI: 10.1016/J.SEPPUR.2023.124382.
[22] ZHANG Heng, ZHAI Qian, GUAN Xiaoyu, et al. Tri-layered bicomponent microfilament composite fabric for highly efficient cold protection[J]. Small, 2023. DOI: 10.1002/SMLL.202303820.
[1] 肖昊, 孙辉, 于斌, 朱祥祥, 杨潇东. 壳聚糖-SiO2气凝胶/纤维素/聚丙烯复合水刺材料的制备及其吸附染料性能[J]. 纺织学报, 2024, 45(02): 179-188.
[2] 史玉磊, 曲连艺, 刘江龙, 徐英俊. 氧化锌/儿茶酚甲醛树脂微球抗菌粘胶纤维的制备及其性能[J]. 纺织学报, 2024, 45(02): 21-27.
[3] 魏义慧, 张宇静, 邓辉话, 邓庆辉, 陈浩锵, 张须臻, 于斌, 朱斐超. 高熔融指数聚乙烯母粒的制备及其红外透射熔喷材料的可纺性[J]. 纺织学报, 2024, 45(02): 28-35.
[4] 杨奇, 刘高慧, 黄琪帏, 胡睿, 丁彬, 俞建勇, 王先锋. 熔喷聚乳酸/聚偏氟乙烯电晕驻极空气过滤材料电荷存储与过滤性能相关性研究[J]. 纺织学报, 2024, 45(01): 12-22.
[5] 刘金鑫, 周雨萱, 朱柏融, 吴海波, 张克勤. 热黏合聚乙烯/聚丙烯双组分纺黏非织造材料性能及其过滤机制[J]. 纺织学报, 2024, 45(01): 23-29.
[6] 王镕琛, 张恒, 翟倩, 刘瑞焱, 黄鹏宇, 李霞, 甄琪, 崔景强. 聚乳酸超细纤维敷料的熔喷成形工艺及其快速导液特性[J]. 纺织学报, 2024, 45(01): 30-38.
[7] 戎成宝, 孙辉, 于斌. 银-铜双金属纳米粒子/聚乳酸复合纳米纤维膜的制备及其抗菌性能[J]. 纺织学报, 2024, 45(01): 48-55.
[8] 孟娜, 王先锋, 李召岭, 俞建勇, 丁彬. 熔喷非织造布的驻极技术研究进展[J]. 纺织学报, 2023, 44(12): 225-232.
[9] 孙辉, 崔小港, 彭思伟, 丰江丽, 于斌. 聚乳酸/磁性金属有机框架材料复合熔喷布的制备及其空气过滤性能[J]. 纺织学报, 2023, 44(12): 26-34.
[10] 刘骏韬, 孙婷, 涂虎, 胡敏, 张如全, 孙雷, 罗霞, 纪华. 全棉水刺非织造布的等离子体冷堆脱脂漂白工艺响应面法优化[J]. 纺织学报, 2023, 44(11): 132-141.
[11] 张广知, 杨甫生, 方进, 杨顺. 聚乳酸非织造布植酸/壳聚糖/硼酸一浴法阻燃整理[J]. 纺织学报, 2023, 44(10): 120-126.
[12] 娄辉清, 上媛媛, 曹先仲, 徐蓓蕾. 碳氮化钛/粘胶纤维束集合体太阳能界面水蒸发器的制备及其性能[J]. 纺织学报, 2023, 44(10): 9-15.
[13] 徐瑞东, 王航, 曲丽君, 田明伟. 聚乳酸非织造基材触摸传感电子织物制备及其性能[J]. 纺织学报, 2023, 44(09): 161-167.
[14] 孙明涛, 陈成玉, 闫伟霞, 曹珊珊, 韩克清. 针刺加固频率对黄麻纤维/聚乳酸短纤复合板性能的影响[J]. 纺织学报, 2023, 44(09): 91-98.
[15] 谷英姝, 朱燕龙, 汪滨, 董振峰, 谷潇夏, 杨昌兰, 崔萌, 张秀芹. 聚乳酸/驻极体熔喷非织造材料的制备及其性能[J]. 纺织学报, 2023, 44(08): 41-49.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!