纺织学报 ›› 2024, Vol. 45 ›› Issue (10): 152-160.doi: 10.13475/j.fzxb.20230705701

• 染整工程 • 上一篇    下一篇

导电复合材料涂覆式全织物基柔性压阻传感器制备

肖渊1,2(), 童垚1, 胡呈安1, 武贤军1, 杨磊鹏1   

  1. 1.西安工程大学 机电工程学院, 陕西 西安 710048
    2.西安市现代智能纺织装备重点实验室, 陕西 西安 710048
  • 收稿日期:2023-07-21 修回日期:2024-01-15 出版日期:2024-10-15 发布日期:2024-10-22
  • 作者简介:肖渊(1975—),男,教授,博士。主要研究方向为微滴喷射成型技术、能量收集技术、可穿戴智能纺织品。E-mail:xiaoyuanjidian@xpu.edu.cn

Preparation of all-fabric flexible piezoresistive sensors based on conductive composite coating

XIAO Yuan1,2(), TONG Yao1, HU Cheng'an1, WU Xianjun1, YANG Leipeng1   

  1. 1. College of Electrical and Mechanical Engineering, Xi'an Polytechnic University, Xi'an, Shaanxi 710048, China
    2. Xi'an Key Laboratory of Modern Intelligent Textile Equipment, Xi'an, Shaanxi 710048, China
  • Received:2023-07-21 Revised:2024-01-15 Published:2024-10-15 Online:2024-10-22

摘要:

针对目前织物基柔性压阻传感器制备工艺相对复杂、导电材料与织物结合度有限等问题,提出以聚二甲基硅氧烷(PDMS)-多壁碳纳米管(MWCNTs)/炭黑(CB)为导电复合材料涂覆非织造布制备压敏层,采用微滴喷射技术在织物表面直接成形叉指型金属电极,制备织物基柔性压阻传感器的方法。当CB与MWCNTs质量比为3∶2时,对不同MWCNTs填充量下导电复合材料形态及制备的压敏层微观形貌观察,并研究其对传感器灵敏度的影响,最后对制得传感器的性能及应用进行测试。结果表明:导电材料在PDMS中分散均匀,导电复合材料与织物结合紧密;当MWCNTs质量分数为2.5%时,所制传感器灵敏度最高可达0.353 kPa-1,检测范围为0~25 kPa,响应/恢复时间为150/200 ms,最低检测限约为49 Pa,具有良好的重复稳定性(约1 600次)。此外,该传感器可识别出手指按压以及手指和腕部弯曲的压力信号,可应用于人体健康、运动等信号监测。

关键词: 柔性压力传感器, 棉织物, 非织造布, 导电复合材料, 涂覆法, 银电极

Abstract:

Objective Smart textiles are a new type of textile material that highly integrates flexible electronic devices with fabrics, which has great application potential in medical health and sports monitoring. The fabrication of flexible piezoresistive sensors, which enable the interaction between the human body and external information, is crucial for achieving smartness in textiles. Addressing the challenges posed by the intricate preparation process of flexible piezoresistive sensors and the integration of conductive materials with fabrics, this study presents a fabric-based approach to overcome these limitations.

Method Polydimethylsiloxane-multi-walled carbon nanotubes/carbon black (PDMS-MWCNTs/CB) was used as a conductive composite material for coating non-woven fabric, aiming to fabricate a piezoresistive layer. Microdrop injection technique was utilized to pattern fork-finger metal electrodes directly on the fabric surface, thereby facilitating the construction of flexible piezoresistive sensors based on fabric. Characterization and analysis of the fabric metal electrodes, conductive composites, piezoresistive layers, and sensors were carried out using an RTS-4 four-probe tester, field-emission scanning electron microscope, tensiometer, digital bridge, and a self-assembled cyclic recirculation device.

Results Conductive composites with different mass ratios of CB and MWCNTs were prepared, and the piezoresistive properties of the conductive composites with varying ratios of mass were investigated. The results showed that the resistance increment (R0-R) of conductive composites tended to increase and then decrease with the increase of CB content under the same pressure. When the mass ratio was 3∶2, the conductive composites exhibited superior piezoresistive response characteristics. Conductive composites and pressure-sensitive layers, incorporating MWCNTs with varying filling contents, were fabricated and investigated. The study encompassed morphological examination of the conductive composites and microstructural analysis of the pressure-sensitive layers. The findings revealed that MWCNTs could be uniformly dispersed within PDMS, with a denser conductive network emerging as the filling quality increased. A synergistic conductive network, characterized by a "grape cluster"-like arrangement, was observed to interconnect MWCNTs and CB within the conductive network. The conductive composite material was uniformly deposited on both the surface and within the nonwoven fabric. Flexibility tests demonstrated that the conductive composite material could be securely adhered to the fabric, with no separation of the conductive material from the nonwoven base. Sensitivity quantifies the ability of the sensor to reflect external stimuli accurately. Sensors with varying MWCNT fillings were prepared and tested to assess sensitivity. The results revealed that the resistance change rate escalated with increasing pressure. The sensor exhibited its highest sensitivity of 0.353 kPa-1 when the MWCNT filling mass fraction reached 2.5%. The comprehensive performance of the sensor was examined, focusing on aspects such as hysteresis, response/recovery time, repeatability stability, and resolution. The sensor, filled with 2.5% MWCNTs, demonstrated a hysteresis rate of approximately 31.2%, attributed to the inherent structure of the nonwoven material. Its response/recovery time was 150/200 ms, with a minimum detection limit of approximately 49 Pa and excellent repeatability stability (about 1 600 times). Furthermore, the responsiveness of the sensor to human motion signals, including pressure signals from finger presses and finger/wrist flexion, was tested. The results indicated that the sensor could detect and provide feedback on finger pressure, finger bending angle, and continuous wrist bending signals, rendering it suitable for applications in human health and motion signal monitoring.

Conclusion This research addresses the difficulty in achieving efficient integration between conductive materials and textiles. The textile-based flexible piezoresistive pressure sensors demonstrate superior sensing capabilities, rendering them appropriate for monitoring human motion signals. These sensors exhibit considerable potential for further development in applications related to human health and movement tracking. Enhanced sensing performance can be achieved by optimizing conductive composite preparation techniques and developing flexible sensors. This sensor may be further enhanced by exploring and incorporating additional fabric substrates.

Key words: flexible pressure sensor, cotton fabric, nonwoven, conductive composite material, coating method, silver electrode

中图分类号: 

  • TP212

图1

织物基柔性压阻传感器结构及工作原理"

图2

织物传感器电极的制备"

图3

传感器压敏层的制备"

图4

织物基压阻式压力传感器实物图"

图5

传感器性能测试示意图"

图6

不同质量比的导电复合材料电阻增量随压力的变化"

图7

不同MWCNTs质量分数下PDMS-MWCNTs/CB复合材料SEM照片"

图8

PDMS-MWCNTs/CB涂覆非织造布SEM照片"

图9

压敏层弯折1 000次前后对比图"

图10

不同MWCNTs/CB填充质量下的传感器相对电阻随压强变化"

图11

MWCNTs质量分数为2.5%的传感器加载-卸载曲线"

图12

MWCNTs质量分数为2.5%的传感器响应-恢复时间"

图13

MWCNTs质量分数为2.5%时传感器重复性"

图14

MWCNTs质量分数为2.5%时传感器分辨率"

图15

柔性压阻传感器人体运动信号监测应用"

[1] 马香钰, 夏广波, 邱琳琳, 等. 纤维及织物基柔性可穿戴器件研究进展[J]. 材料导报, 2020, 34(S1):490-497.
MA Xiangyu, XIA Guangbo, QIU Linlin, et al. Research progress on fiber and fabric-based flexible wearable devices[J]. Materials Guide, 2020, 34(S1): 490-497.
[2] ZHANG J, ZHANG Y, LI Y, et al. Textile-based flexible pressure sensors: a review[J]. Polymer Reviews, 2022, 62(1): 65-94.
[3] YE X R, TIAN M W, LI M, et al. All-fabric-based flexible capacitive sensors with pressure detection and non-contact instruction capability[J]. Coatings, 2022. DOI: 10.3390/coatings12030302.
[4] ZHOU P R, ZHENG Z P, WANG B Q, et al. Self-powered flexible piezoelectric sensors based on self-assembled 10 nm BaTiO3 nanocubes on glass fiber fabric[J]. Nano Energy, 2022. DOI: 10.1016/j.nanoen.2022.107400.
[5] CHEN F C, LIU H J, XU M T, et al. Fast-response piezoresistive pressure sensor based on polyaniline cotton fabric for human motion monitoring[J]. Cellulose, 2022, 29: 6983-6995.
[6] 汪康, 何壮, 喻研. 柔性压阻式压力传感器的制备与性能优化[J]. 电子元件与材料, 2022, 41(8): 781-793.
WANG Kang, HE Zhuang, YU Yan. Preparation and performance optimization of flexible piezoresistive pressure sensors[J]. Electronic Components and Materials, 2022, 41(8): 781-793.
[7] 徐娜, 王国栋, 陶亚楠. 柔性可穿戴压阻式压力传感器研究进展[J/OL]. 化工进展, 2023.DOI:10.16085/j.issn.1000-6613-2022-2228.
XU Na, WANG Guodong, TAO Yanan. Flexible wearable piezoresistive pressure sensor[J/OL]. Chemical Progress, 2023.DOI:10.16085/j.issn.1000-6613-2022-2228.
[8] ZHANG P, CHEN Y C, LI Y X, et al. A flexible strain sensor based on the porous structure of a carbon black/carbon nanotube conducting network for human motion detection[J]. Sensors, 2020. DOI: 10.3390/s20041154.
[9] WANG Y, ZHANG J S, WANG Y, et al. Integrated flexible piezoresistive pressure sensor based on CB/CNTs/SR composite with SR buffer layer for wide sensing range[J]. Journal of Materials Science: Materials in Electronics, 2020, 31: 21557-21568.
[10] CHEN Y L, WANG S T, PAN F, et al. A numerical study on electrical percolation of polymer-matrix composites with hybrid fillers of carbon nanotubes and carbon black[J]. Journal of Nanomaterials, 2014. DOI: 10.1155/2014/614797.
[11] XU C, LU H D, LIU Z, et al. Flexible piezoresistive sensors based on porous PDMS/CB composite materials prepared by the solvothermal method[J]. Journal of Materials Science: Materials in Electronics, 2023. DOI: 10.1007/s10854-023-10322-z.
[12] XUE B, XIE H Y, ZHAO J X, et al. Flexible Piezoresistive Pressure Sensor Based on Electrospun Rough Polyurethane Nanofibers Film for Human Motion Monitoring[J]. Nanomaterials, 2022. DOI: 10.3390/nano12040723.
[13] GAO Y, XIE C, ZHENG Z J. Textile Composite Electrodes for Flexible Batteries and Supercapacitors: Opportunities and Challenges[J]. Advanced Energy Materials, 2021. DOI: 10.1002/aenm.202002838.
[14] KIM G, VU C C, KIM J. Single-layer pressure textile sensors with woven conductive yarn circuit[J]. Applied Sciences, 2020. DOI: 10.3390/app10082877.
[15] ZHOU Z Q, LI Y, CHENG J, et al. Supersensitive all-fabric pressure sensors using printed textile electrode arrays for human motion monitoring and human-machine interaction[J]. Journal of Materials Chemistry C, 2018, 6(48): 13120-13127.
[16] XIAO Y, LI Q, ZHANG C K, et al. Fabrication of wilver electrical circuits on textile substrates by reactive inkjet printing[J]. IEEE Sensors Journal, 2022, 22(11): 11056-11064.
[17] 汪海船. 基于PDMS/CNTs的柔性压力传感器的研究[D]. 桂林: 广西师范大学, 2020:27-28.
WANG Haichuan. Research on flexible pressure sensors based on PDMS/CNTs[D]. Guilin:Guangxi Normal University, 2020:27-28.
[1] 张应秀, 徐丽慧, 潘虹, 姚程健, 赵红, 窦梅冉, 沈勇, 赵诗怡. 基于甘蔗渣多孔碳的超疏水棉织物制备及其性能[J]. 纺织学报, 2024, 45(10): 161-169.
[2] 刘文龙, 李好义, 何东洋, 李长金, 张杨, 马秀清, 李满意, 杨卫民. 低密度聚乙烯熔喷工艺及其非织造布性能[J]. 纺织学报, 2024, 45(10): 31-38.
[3] 赵强, 刘正江, 高晓平, 张云婷, 张宏. 蒙脱土协同TiO2整理棉织物的功能性[J]. 纺织学报, 2024, 45(09): 121-128.
[4] 卢道坤, 王仕飞, 董倩, 史纳蔓, 李思琦, 干露露, 周爽, 沙莎, 张如全, 罗磊. 基于MXene的导电织物构筑及其多功能应用[J]. 纺织学报, 2024, 45(09): 137-145.
[5] 刘慧, 李平, 朱平, 刘云. γ-脲基丙基三乙氧基硅烷/苯基膦酸阻燃抗菌棉织物的制备及其性能[J]. 纺织学报, 2024, 45(08): 205-214.
[6] 赵攀, 谭文丽, 赵心蕊, 付金凡, 刘成显, 袁久刚. 基于离子液体微溶焊接的可降解薄膜制备及其性能[J]. 纺织学报, 2024, 45(08): 89-98.
[7] 李旭, 刘祥吉, 靳鑫, 杨承昊, 董朝红. 耐久高效磷/氮协同阻燃剂的制备及其在棉织物上的应用[J]. 纺织学报, 2024, 45(07): 121-129.
[8] 柯文涛, 陈明, 郑淳天, 石小丽, 朱新生. 石蜡Pickering乳液及其微胶囊相变非织造材料的制备与性能[J]. 纺织学报, 2024, 45(07): 130-139.
[9] 张诗雨, 姚依婷, 董晨珊, 张如全, 杨红军, 顾绍金, 黄菁菁, 杜杰毫. 金属有机框架/聚丙烯纤维基复合材料对化学战剂模拟物的快速降解[J]. 纺织学报, 2024, 45(06): 134-141.
[10] 韩华, 胡安然, 孙艺文, 丁作伟, 李伟, 张彩云, 郭增革. 碘释放抗菌涂层棉织物的制备及其在伤口修复中的应用[J]. 纺织学报, 2024, 45(05): 113-120.
[11] 薛宝霞, 杨色, 张春艳, 刘晶, 刘勇, 程伟, 张利, 牛梅. 聚氮异丙基丙烯酰胺抗菌水凝胶复合棉织物的制备及其性能[J]. 纺织学报, 2024, 45(05): 129-137.
[12] 陈锦苗, 李纪伟, 陈萌, 宁新, 崔爱华, 王娜. 壳聚糖微纳米纤维复合抗菌空气滤材的制备及其性能[J]. 纺织学报, 2024, 45(05): 19-26.
[13] 向娇娇, 柳浩, 欧阳申珅, 马万彬, 柴丽琴, 周岚, 邵建中, 刘国金. 高疏水性双面结构生色棉织物的一步法制备[J]. 纺织学报, 2024, 45(04): 111-119.
[14] 李丽丽, 袁亮, 唐雨霞, 杨文菊, 王浩. 聚多巴胺/壳聚糖改性棉织物的茶色素染色及其抗菌和防紫外线性能[J]. 纺织学报, 2024, 45(03): 106-113.
[15] 田博阳, 王向泽, 杨湙雯, 吴晶. 非对称结构纤维膜的制备及其热调控性能[J]. 纺织学报, 2024, 45(02): 11-20.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!