纺织学报 ›› 2024, Vol. 45 ›› Issue (10): 152-160.doi: 10.13475/j.fzxb.20230705701
肖渊1,2(), 童垚1, 胡呈安1, 武贤军1, 杨磊鹏1
XIAO Yuan1,2(), TONG Yao1, HU Cheng'an1, WU Xianjun1, YANG Leipeng1
摘要:
针对目前织物基柔性压阻传感器制备工艺相对复杂、导电材料与织物结合度有限等问题,提出以聚二甲基硅氧烷(PDMS)-多壁碳纳米管(MWCNTs)/炭黑(CB)为导电复合材料涂覆非织造布制备压敏层,采用微滴喷射技术在织物表面直接成形叉指型金属电极,制备织物基柔性压阻传感器的方法。当CB与MWCNTs质量比为3∶2时,对不同MWCNTs填充量下导电复合材料形态及制备的压敏层微观形貌观察,并研究其对传感器灵敏度的影响,最后对制得传感器的性能及应用进行测试。结果表明:导电材料在PDMS中分散均匀,导电复合材料与织物结合紧密;当MWCNTs质量分数为2.5%时,所制传感器灵敏度最高可达0.353 kPa-1,检测范围为0~25 kPa,响应/恢复时间为150/200 ms,最低检测限约为49 Pa,具有良好的重复稳定性(约1 600次)。此外,该传感器可识别出手指按压以及手指和腕部弯曲的压力信号,可应用于人体健康、运动等信号监测。
中图分类号:
[1] | 马香钰, 夏广波, 邱琳琳, 等. 纤维及织物基柔性可穿戴器件研究进展[J]. 材料导报, 2020, 34(S1):490-497. |
MA Xiangyu, XIA Guangbo, QIU Linlin, et al. Research progress on fiber and fabric-based flexible wearable devices[J]. Materials Guide, 2020, 34(S1): 490-497. | |
[2] | ZHANG J, ZHANG Y, LI Y, et al. Textile-based flexible pressure sensors: a review[J]. Polymer Reviews, 2022, 62(1): 65-94. |
[3] | YE X R, TIAN M W, LI M, et al. All-fabric-based flexible capacitive sensors with pressure detection and non-contact instruction capability[J]. Coatings, 2022. DOI: 10.3390/coatings12030302. |
[4] | ZHOU P R, ZHENG Z P, WANG B Q, et al. Self-powered flexible piezoelectric sensors based on self-assembled 10 nm BaTiO3 nanocubes on glass fiber fabric[J]. Nano Energy, 2022. DOI: 10.1016/j.nanoen.2022.107400. |
[5] | CHEN F C, LIU H J, XU M T, et al. Fast-response piezoresistive pressure sensor based on polyaniline cotton fabric for human motion monitoring[J]. Cellulose, 2022, 29: 6983-6995. |
[6] | 汪康, 何壮, 喻研. 柔性压阻式压力传感器的制备与性能优化[J]. 电子元件与材料, 2022, 41(8): 781-793. |
WANG Kang, HE Zhuang, YU Yan. Preparation and performance optimization of flexible piezoresistive pressure sensors[J]. Electronic Components and Materials, 2022, 41(8): 781-793. | |
[7] | 徐娜, 王国栋, 陶亚楠. 柔性可穿戴压阻式压力传感器研究进展[J/OL]. 化工进展, 2023.DOI:10.16085/j.issn.1000-6613-2022-2228. |
XU Na, WANG Guodong, TAO Yanan. Flexible wearable piezoresistive pressure sensor[J/OL]. Chemical Progress, 2023.DOI:10.16085/j.issn.1000-6613-2022-2228. | |
[8] | ZHANG P, CHEN Y C, LI Y X, et al. A flexible strain sensor based on the porous structure of a carbon black/carbon nanotube conducting network for human motion detection[J]. Sensors, 2020. DOI: 10.3390/s20041154. |
[9] | WANG Y, ZHANG J S, WANG Y, et al. Integrated flexible piezoresistive pressure sensor based on CB/CNTs/SR composite with SR buffer layer for wide sensing range[J]. Journal of Materials Science: Materials in Electronics, 2020, 31: 21557-21568. |
[10] | CHEN Y L, WANG S T, PAN F, et al. A numerical study on electrical percolation of polymer-matrix composites with hybrid fillers of carbon nanotubes and carbon black[J]. Journal of Nanomaterials, 2014. DOI: 10.1155/2014/614797. |
[11] | XU C, LU H D, LIU Z, et al. Flexible piezoresistive sensors based on porous PDMS/CB composite materials prepared by the solvothermal method[J]. Journal of Materials Science: Materials in Electronics, 2023. DOI: 10.1007/s10854-023-10322-z. |
[12] | XUE B, XIE H Y, ZHAO J X, et al. Flexible Piezoresistive Pressure Sensor Based on Electrospun Rough Polyurethane Nanofibers Film for Human Motion Monitoring[J]. Nanomaterials, 2022. DOI: 10.3390/nano12040723. |
[13] | GAO Y, XIE C, ZHENG Z J. Textile Composite Electrodes for Flexible Batteries and Supercapacitors: Opportunities and Challenges[J]. Advanced Energy Materials, 2021. DOI: 10.1002/aenm.202002838. |
[14] | KIM G, VU C C, KIM J. Single-layer pressure textile sensors with woven conductive yarn circuit[J]. Applied Sciences, 2020. DOI: 10.3390/app10082877. |
[15] | ZHOU Z Q, LI Y, CHENG J, et al. Supersensitive all-fabric pressure sensors using printed textile electrode arrays for human motion monitoring and human-machine interaction[J]. Journal of Materials Chemistry C, 2018, 6(48): 13120-13127. |
[16] | XIAO Y, LI Q, ZHANG C K, et al. Fabrication of wilver electrical circuits on textile substrates by reactive inkjet printing[J]. IEEE Sensors Journal, 2022, 22(11): 11056-11064. |
[17] | 汪海船. 基于PDMS/CNTs的柔性压力传感器的研究[D]. 桂林: 广西师范大学, 2020:27-28. |
WANG Haichuan. Research on flexible pressure sensors based on PDMS/CNTs[D]. Guilin:Guangxi Normal University, 2020:27-28. |
[1] | 张应秀, 徐丽慧, 潘虹, 姚程健, 赵红, 窦梅冉, 沈勇, 赵诗怡. 基于甘蔗渣多孔碳的超疏水棉织物制备及其性能[J]. 纺织学报, 2024, 45(10): 161-169. |
[2] | 刘文龙, 李好义, 何东洋, 李长金, 张杨, 马秀清, 李满意, 杨卫民. 低密度聚乙烯熔喷工艺及其非织造布性能[J]. 纺织学报, 2024, 45(10): 31-38. |
[3] | 赵强, 刘正江, 高晓平, 张云婷, 张宏. 蒙脱土协同TiO2整理棉织物的功能性[J]. 纺织学报, 2024, 45(09): 121-128. |
[4] | 卢道坤, 王仕飞, 董倩, 史纳蔓, 李思琦, 干露露, 周爽, 沙莎, 张如全, 罗磊. 基于MXene的导电织物构筑及其多功能应用[J]. 纺织学报, 2024, 45(09): 137-145. |
[5] | 刘慧, 李平, 朱平, 刘云. γ-脲基丙基三乙氧基硅烷/苯基膦酸阻燃抗菌棉织物的制备及其性能[J]. 纺织学报, 2024, 45(08): 205-214. |
[6] | 赵攀, 谭文丽, 赵心蕊, 付金凡, 刘成显, 袁久刚. 基于离子液体微溶焊接的可降解薄膜制备及其性能[J]. 纺织学报, 2024, 45(08): 89-98. |
[7] | 李旭, 刘祥吉, 靳鑫, 杨承昊, 董朝红. 耐久高效磷/氮协同阻燃剂的制备及其在棉织物上的应用[J]. 纺织学报, 2024, 45(07): 121-129. |
[8] | 柯文涛, 陈明, 郑淳天, 石小丽, 朱新生. 石蜡Pickering乳液及其微胶囊相变非织造材料的制备与性能[J]. 纺织学报, 2024, 45(07): 130-139. |
[9] | 张诗雨, 姚依婷, 董晨珊, 张如全, 杨红军, 顾绍金, 黄菁菁, 杜杰毫. 金属有机框架/聚丙烯纤维基复合材料对化学战剂模拟物的快速降解[J]. 纺织学报, 2024, 45(06): 134-141. |
[10] | 韩华, 胡安然, 孙艺文, 丁作伟, 李伟, 张彩云, 郭增革. 碘释放抗菌涂层棉织物的制备及其在伤口修复中的应用[J]. 纺织学报, 2024, 45(05): 113-120. |
[11] | 薛宝霞, 杨色, 张春艳, 刘晶, 刘勇, 程伟, 张利, 牛梅. 聚氮异丙基丙烯酰胺抗菌水凝胶复合棉织物的制备及其性能[J]. 纺织学报, 2024, 45(05): 129-137. |
[12] | 陈锦苗, 李纪伟, 陈萌, 宁新, 崔爱华, 王娜. 壳聚糖微纳米纤维复合抗菌空气滤材的制备及其性能[J]. 纺织学报, 2024, 45(05): 19-26. |
[13] | 向娇娇, 柳浩, 欧阳申珅, 马万彬, 柴丽琴, 周岚, 邵建中, 刘国金. 高疏水性双面结构生色棉织物的一步法制备[J]. 纺织学报, 2024, 45(04): 111-119. |
[14] | 李丽丽, 袁亮, 唐雨霞, 杨文菊, 王浩. 聚多巴胺/壳聚糖改性棉织物的茶色素染色及其抗菌和防紫外线性能[J]. 纺织学报, 2024, 45(03): 106-113. |
[15] | 田博阳, 王向泽, 杨湙雯, 吴晶. 非对称结构纤维膜的制备及其热调控性能[J]. 纺织学报, 2024, 45(02): 11-20. |
|