纺织学报 ›› 2024, Vol. 45 ›› Issue (10): 9-15.doi: 10.13475/j.fzxb.20230706201
LUO Mengying, CHEN Huijun, XIA Ming, WANG Dong, LI Mufang()
摘要:
为满足柔性可穿戴传感器的多功能传感需求,实现应变和温度传感具有重大的意义。采用湿法纺丝技术制备聚(3,4-乙烯二氧噻吩)-聚苯乙烯磺酸(PEDOT:PSS)/银纳米线(AgNWs)/聚氨酯(PU)弹性复合导电纤维,研究其拉伸应变传感性能和温度传感性能。结果表明:当AgNWs质量分数为20%,(PEDOT:PSS)与PU质量比为1∶3时,纤维热电性能达到最佳,电导率为47.4 S/cm,塞贝克系数为13.8 μV/K,功率因数为902.7 nW/(m·K2),此外,该弹性导电复合纤维具有良好的力学性能,断裂伸长率可达800%,能够检测0%~90%的应变范围,并在100次循环拉伸/回复下依旧保持良好稳定性;同时可将其作为温度传感器,快速检测人体与环境温度。
中图分类号:
[1] | LIU Z K, WANG J R, ZHENG Z J, et al. Functionalized fiber-based strain sensors: pathway to next-generation wearable electronics[J]. Nano-Micro Letters, 2022.DOI:10.1007/s40820-022-00806-8. |
[2] | LIU X H, MIAO J L, FAN Q, et al. Recent progress on smart fiber and textile based wearable strain sensors: materials, fabrications and applications[J]. Advanced Fiber Materials, 2022, 4: 361-389. |
[3] | 汤健, 闫涛, 潘志娟. 导电复合纤维基柔性应变传感器的研究进展[J]. 纺织学报, 2021, 42(5): 168-177. |
TANG Jian, YAN Tao, PAN Zhijuan, Research progress of flexible strain sensors based on conductive composite fibers[J]. Journal of Textile Research, 2021, 42(5): 168-177. | |
[4] | JIANG N, HU D W, XU Y Q, et al. Ionic liquid enabled flexible transparent polydimethylsiloxane sensors for both strain and temperature sensing[J]. Advanced Composites and Hybrid Materials, 2021, 4(3): 574-583. |
[5] | XU Y Q, CHEN L R, CHEN J W, et al. Flexible and transparent pressure/temperature sensors based on ionogels with bioinspired interlocked micro-structures[J]. ACS Applied Materials Interfaces, 2022, 14(1): 2122-2131. |
[6] | LI Y X, WANG R R, WANG G E, et al. Mutually noninterfering flexible pressure-temperature dual-modal sensors based on conductive metal-organic framework for electronic skin[J]. ACS Nano, 2022, 16(1): 473-484. |
[7] | HE X Y, SHI J, HAO Y N. PEDOT: PSS/CNT composites based ultra-stretchable thermoelectrics and their application as strain sensors[J]. Composites Communications, 2021. DOI: 10.1016/j.coco.2021.100822. |
[8] | 鲍程鹏, 周亚杰, 董岚, 等. PEDOT∶PSS及其纳米复合材料热电性质的研究进展[J]. 复合材料学报, 2023, 40(2): 649-664. |
BAO Chengpeng, ZHOU Yajie, DONG Lan, et al. Research progress in thermoelectric properties of PEDOT:PSS and its nanocomposites[J]. Acta Materiae Compositae Sinica, 2023, 40(2): 649-664. | |
[9] |
谢娇, 王家俊, 俞秋燕, 等, 碳纳米管/聚合物温差发电复合纺织材料的制备及其性能[J]. 纺织学报, 2018, 39(11): 50-55.
doi: 10.13475/j.fzxb.20180103206 |
[10] | WANG X Z, SUN H L, YUE X Y, et al. A highly stretchable carbon nanotubes/thermoplastic polyurethane fiber shaped strain sensor with porous structure for human motion monitoring[J]. Composites Science and Technology, 2018, 168: 126-132. |
[11] | GAO Q, WANG Y H, WANG P, et al, Highly Stretchable, Conductive and long-term stable PEDOT: PSS fibers with surface arrays for wearable sensors[J]. Advanced Engineering Materials, 2022. DOI: 10.1002/adem.202101448. |
[12] | SHI W H, WANG Z W, SONG H, et al. High-sensitivity and extreme environment-resistant sensors based on PEDOT: PSS@PVA hydrogel fibers for physiological monitoring[J]. ACS Applied Materials Interfaces, 2022, 14(30): 35114-35125. |
[13] | TUYET N L, GEON S L, BOGYEONG K, et al. Microfluidic preparation of highly stretchable natural rubber microfiber containing CNT/PEDOT: PSS hybrid for fabric-sewable wearable strain sensor[J]. Composites Science and Technology, 2021. DOI: 10.1016/j.compscitech.2021.108811. |
[14] | MOHANNAD Z S, JOSELITO M R, PETER C I, et al. Strain-responsive polyurethane/PEDOT: PSS elastomeric composite fibers with high electrical conductivity[J]. Advanced Functional Materials, 2014, 24(20): 2921-3099. |
[9] |
XIE Jiao, WANG Jiajun, YU Qiuyan, et al. Preparation and property of thermoelectric composite textile materials with carbon nanotubes/polymer[J]. Journal of Textile Research, 2018, 39(11): 50-55.
doi: 10.13475/j.fzxb.20180103206 |
[1] | 汪宇佳, 王怡, 王雅思, 代方银, 李智. 基于家蚕平板丝结构的柔性压力传感器制备及其传感性能[J]. 纺织学报, 2024, 45(09): 10-17. |
[2] | 吴帆, 梁凤玉, 肖奕葶, 杨智博, 王文婷, 樊威. 聚(3,4-乙撑二氧噻吩):聚苯乙烯磺酸基复合导电纤维的制备及其性能[J]. 纺织学报, 2024, 45(08): 99-106. |
[3] | 施楚, 李俊, 王云仪. 基于温度监测的糖尿病足预防性智能鞋袜研究进展[J]. 纺织学报, 2024, 45(07): 240-247. |
[4] | 胥家辉, 郭肖青, 王伟, 王怀芳, 张传杰, 宫兆庆. 海藻酸钠/纳米蒙脱土纤维制备及其增强增韧机制[J]. 纺织学报, 2024, 45(06): 16-22. |
[5] | 王楠, 孙辉, 于斌, 许磊, 朱祥祥. 基于熔喷非织造材料的温度传感器制备及其传感性能[J]. 纺织学报, 2024, 45(05): 138-146. |
[6] | 刘欢欢, 孟虎, 王朝晖. 适老化智能可穿戴设计研究进展及发展趋势[J]. 纺织学报, 2024, 45(03): 236-243. |
[7] | 陈露, 石宝, 魏赛男, 贾立霞, 阎若思. 三维一体针织结构超级电容器的储能性能[J]. 纺织学报, 2024, 45(02): 126-133. |
[8] | 贾丽萍, 黎明, 李威龙, 冉建华, 毕曙光, 李时伟. 基于长银纳米线的应变传感与电热双功能包芯纱的制备及其性能[J]. 纺织学报, 2023, 44(10): 113-119. |
[9] | 李龙, 张弦, 吴磊. 导电纱线制备方法与应用的研究进展[J]. 纺织学报, 2023, 44(07): 214-221. |
[10] | 关振虹, 李丹, 宋金苓, 冷向阳, 宋西全. 易染间位芳纶的制备及其性能[J]. 纺织学报, 2023, 44(06): 28-32. |
[11] | 狄纯秋, 郭静, 管福成, 相玉龙, 单继成. 双金属离子交联海藻酸盐复合相变纤维的制备与性能[J]. 纺织学报, 2023, 44(05): 54-62. |
[12] | 蒲海红, 贺芃鑫, 宋柏青, 赵丁莹, 李欣峰, 张天一, 马建华. 纤维素/碳纳米管复合纤维的制备及其功能化应用[J]. 纺织学报, 2023, 44(01): 79-86. |
[13] | 杨春利, 周伟贤, 梁京龙, 林桂圳, 刘杰, 倪延朋, 刘云, 商胜龙, 朱平. 磁场诱导结构生色海藻酸钙纤维的快速制备及其性能[J]. 纺织学报, 2022, 43(09): 64-69. |
[14] | 杜璇, 丁长坤, 岳程飞, 苏杰梁, 闫旭焕, 程博闻. 凝固浴对再生胶原纤维结构与性能的影响[J]. 纺织学报, 2022, 43(09): 58-63. |
[15] | 刘欢欢, 王朝晖, 叶勤文, 陈子唯, 郑婧瑾. 可穿戴技术在情绪识别中的应用进展及发展趋势[J]. 纺织学报, 2022, 43(08): 197-205. |
|