纺织学报 ›› 2024, Vol. 45 ›› Issue (08): 241-249.doi: 10.13475/j.fzxb.20230800402

• 综合述评 • 上一篇    下一篇

仿生结构生色技术及其在纺织领域应用的研究进展

史芷丞1, 张玉1, 于鸿2, 马桂玲2, 陈凤翔1(), 徐卫林1   

  1. 1.武汉纺织大学 纺织新材料及先进加工技术国家重点实验室, 湖北 武汉 430200
    2.北京中纺海天新材料技术有限公司, 北京 100026
  • 收稿日期:2023-08-01 修回日期:2024-02-20 出版日期:2024-08-15 发布日期:2024-08-21
  • 通讯作者: 陈凤翔(1985—),男,教授,博士。主要研究方向为功能纤维及器件。E-mail:fxchen_czx@wtu.edu.cn
  • 作者简介:史芷丞(2001—),男,硕士。主要研究方向为功能纤维材料。
  • 基金资助:
    国家自然科学基金项目(52373085);湖北省自然科学基金项目(2023AFB828)

Research progress of biomimetic structural color technology and its application in textile field

SHI Zhicheng1, ZHANG Yu1, YU Hong2, MA Guiling2, CHEN Fengxiang1(), XU Weilin1   

  1. 1. State Key Laboratory of New Textile Materials and Advanced Processing Technologies, Wuhan Textile University, Wuhan, Hubei 430200, China
    2. Beijing Zhongfang Haitian New Material Technology Ltd., Co., Beijing 100026, China
  • Received:2023-08-01 Revised:2024-02-20 Published:2024-08-15 Online:2024-08-21

摘要:

针对传统印染行业高能耗、高污染的问题,急需革新染色技术,开发具有更加高效、节能和环保的染色新方法。结构色因其色彩饱和度高、色彩长期稳定且对环境友好而受到了越来越多的关注,并取得了极大进展,尤其是在纺织印染领域。首先分析了结构色的形成原理,系统总结了结构色材料的制备新技术,包括刮涂法/喷涂法、垂直沉积法、重力沉降法、浸渍提拉法、层层自组装法、电泳沉积法、静电纺丝法、磁控溅射法、原子层沉积法等,并比较了各种技术的优劣。在此基础上,进一步探讨了结构色在纺织领域中的多维应用,指出了结构色所面临的挑战,并从仿生自然发展新型结构色材料、提高结构色色彩丰富度及力学稳定性、突破结构色规模化制备技术、完善结构色产品生态等4个方面展望了结构色的未来发展方向,以期推动结构色跨越式发展,助力 “碳达峰,碳中和”国家战略。

关键词: 结构色, 光子晶体, 结构色纤维, 染色新技术, 结构生色方法

Abstract:

Significance The conventional printing and dyeing sector of the textile industry is known to face serious problems with environmental pollution, excessive energy consumption, and other obstacles, and there is hence an urgent need to promote green reforms for sustainable development of the textile industry. The capacity of structural color to provide textile substrate coloring without the use of chemical colorants like dyes and pigments, which is one breakthrough in addressing the current high pollution of dyeing. As a result, the textile printing and dyeing industry may become more competitive, sustainable, and profitable. This paper will look into the production of structural color fibers, their use in the textile industry, and potential future applications for structural colors.

Progress Structural colors are produced by the physical interaction of periodic structures with light and differ from chemical or pigment coloring due to fundamental differences in their respective mechanisms. The surface morphology and interior microstructure of the materials affect the hue and brightness of structural colors, which offer a lot of potential for creating fiber versatility. Dyeing fabrics using photonic crystals not only provides the fabric a structural color but also adds other features like responsiveness and hydrophobicity. Polystyrene (PS), polymethylmethacrylate (PMMA) and silicon dioxide (SiO2) spheres are typical materials for obtaining structural colors. Inert black carbon fibers may be made multicolored using one of the most efficient processes for creating structural colors, ALD. The colors have high washing resistance, which gives the carbon fibers a hydrophobic quality. At present, spraying/scraping, vertical deposition, gravity deposition, dip-coating, layer-by-layer self-assembly, electrophoretic deposition, electrospinning, magnetic sputtering, and atomic layer deposition are available for the preparation of structural color fibers. Based on these methods, researchers have made efforts to explore the applications of structural colors, especially in the fields of textile printing and dyeing, smart wearables, smart textiles and sensors.

Conclusion and Prospect This review analyzed the formation mechanism of structural coloring, systematically summarized the current main preparation methods of structural coloring fibers, and further explored the multidimensional applications of structural coloring in the textile field. The future development of the textile industry will be centered on eco-friendly green industrial technologies, and it is an inevitable trend to use structural colors to dye textile materials and provide them with a variety of applications. While ushering in new development opportunities, structural color is also facing some great challenges, mainly including the urgent need for new technologies to improve the color richness and mechanical, the development of new structural color materials, and breakthroughs in the scale of the preparation technology to improve the product ecology. With the in-depth research on structural colors and the continuous progress of preparation technology, the application scenarios of structural colors in many fields, such as material science, biomedicine, textiles and more. Structural color is expected to become an indispensable part of life.

Key words: structural color, photonic crystal, structural color fiber, new coloring technology, structural coloring method

中图分类号: 

  • TS193.5
[1] WELHAM A. The theory of dyeing(and the secret of life)[J]. Journal of the Society of Dyers and Colourists, 2000, 116(5): 140-143.
[2] 孙瑞哲, 王曾敬. 依靠技术进步解决印染行业水污染问题[J]. 环境保护, 2007, 38: 33-35.
SUN Ruizhe, WANG Zengjing. Relying on technological progress to solve the water pollution problem in the printing and dyeing industry[J]. Environmental Protection, 2007, 38: 33-35.
[3] 翟丽莎, 王宗垒, 周敬伊, 等. 纺织用抗菌材料及其应用研究进展[J]. 纺织学报, 2021, 42(9): 170-179.
ZHAI Lisha, WANG Zonglei, ZHOU Jingyi, et al. Progress of antimicrobial materials for textiles and their applications[J]. Journal of Textile Research, 2021, 42(9): 170-179.
[4] ISMAIL S, ELREEDYl A, FUJII M, et al. Fatigue of anammox consortia under long-term 1,4-dioxane exposure and recovery potential: N-kinetics and microbial dynamics[J]. Hazard Mater, 2021.DOI:10.1016/j.jhazmat.2021.125533.
[5] SAMY M, ALALM M G, KHALIL M N, et al. Treatment of hazardous landfill leachate containing 1,4 dioxane by biochar-based photocatalysts in a solar photo-oxidation reactor[J]. Journal of Environmental Management, 2023.DOI:10.1016/j.jenvman.2023.117402.
[6] CHEN FX, LIU X, DONG B H, et al. Preparation of superfine down particles derived from down fiber wastes and their application as an efficient adsorbent toward acid brilliant scarlet 3R[J]. Textile Research Journal, 2016, 86(10): 1050-1062.
[7] ESKEW Jr. The physics and chemistry of color[J]. Color Research and Application, 2002, 27(5): 377-378.
[8] SUN J, BHUSHAN B, TONG J. Structural coloration in nature[J]. Rsc Advances, 2013, 3(35): 14862-14889.
[9] ZHOU L, WU Y, LI G, et al. Fabrication of high-quality silica photonic crystals on polyester fabrics by gravitational sedimentation self-assembly[J]. Coloration Technology, 2015, 131(6): 413-423.
[10] 郭彦丽, 刘建才, 王艳红, 等. 结构色纤维的研究进展[J]. 印染, 2016, 42(14): 47-50.
GUO Yanli, LIU Jiancai, WANG Yanhong, et al. Research progress of structural color fibers[J]. China Dyeing & Finishing, 2016, 42(14): 47-50.
[11] STAVENG D G. Thin film and multilayer optics cause structural colors of many insects and birds[J]. Materials Today: Proceedings, 2014(1): 109-121.
[12] 肖彬, 陈夫山, 孟尧. 结构色材料用于纺织印染领域的研究进展[J]. 高分子材料科学与工程, 2022, 38(1): 182-190.
XIAO Bin, CHEN Fushan, MENG Yao. Research progress in structural color materials used in the field of textile printing and dyeing[J]. Polymer Materials Science and Engineering, 2022, 38 (1): 182-190.
[13] VIGNERON J P, COLOMER J F, VIGNERON N, et al. Natural layer-by-layer photonic structure in the squamae of hoplia coerulea (coleoptera)[J]. Physical Review E, 2005, 72(6): 061904.
[14] PARKER A R. 515 million years of structural colour[J]. Journal of Optics A: Pure and Applied Optics, 2000.DOI:10.1088/1464-4258/2/6/201.
[15] WHITNEY H M, KOLLE M, ANDREW P, et al. Floral iridescence, produced by diffractive optics, acts as a cue for animal pollinators[J]. Science, 2009, 323(5910): 130-133.
doi: 10.1126/science.1166256 pmid: 19119235
[16] 刘志福. 基于光子晶体的结构色纤维制备及其显色性能研究[D]. 上海: 东华大学, 2013: 7-8.
LIU Zhifu. Preparation and color rendering properties of structured color fibers based on photonic crystals[D]. Shanghai: Donghua University, 2013: 7-8.
[17] JOHN S. Strong localization of photons in certain disordered dielectric superlattices[J]. Physical Review Letters, 1987, 58(23): 2486-2489.
pmid: 10034761
[18] TOPCU G, GUNER T, DEMIR M. Non-iridescent structural colors from uniform-sized SiO2 colloids[J]. Photonics and Nanostructures-Fundamentals and Applications, 2018, 29: 22-29.
[19] PARKER A R, PHEDRAN R C, KENZIE D R, et al. Aphrodite's iridescence[J]. Nature, 2001, 409(6816): 36-37.
[20] 张克勤, 袁伟, 张骜. 光子晶体的结构色[J]. 功能材料信息, 2010, 7(5): 39-44.
ZHANG Keqin, YUAN Wei, ZHANG Ao. Structural color of photonic crystals[J]. Functional Material Information, 2010, 7 (5): 39-44.
[21] VIGNERON J P, SIMONIS P. Natural photonic crystals[J]. Physica B: Condensed Matter, 2012, 407(20): 4032-4036.
[22] 朱小威, 韦天琛, 邢铁玲, 等. 非晶光子晶体结构色织物的制备及其数值模拟[J]. 纺织学报, 2021, 42(9): 90-96.
ZHU Xiaowei, WEI Tianchen, XING Tieling, et al. Preparation and numerical simulation of colored fabrics with amorphous photonic crystal structure[J]. Journal of Textile Research, 2021, 42 (9): 90-96.
[23] LI Q, ZHANG Y, SHI L, et al. Additive mixing and conformal coating of noniridescent structural colors with robust mechanical properties fabricated by atomization deposition[J]. ACS Nano, 2018, 12(4): 3095-3102.
doi: 10.1021/acsnano.7b08259 pmid: 29438609
[24] 高雅芳, 张耘箫, 刘国金. 光子晶体结构生色纺织品的快速制备及其性能表征[J]. 浙江理工大学学报(自然科学版), 2021, 45(2): 157-163.
GAO Yafang, ZHANG Yunxiao, LIU Guojin. Rapid preparation and characterization of photonic crystal structure colored textiles[J]. Journal of Zhejiang Sci-Tech University(Natural Science Edition), 2021, 45(2): 157-163.
[25] 何玉莹. 基于胶体光子晶体的结构色织物的喷涂制备研究[D]. 上海: 华东师范大学, 2022: 11-13.
HE Yuying. Study on spray preparation of structural colored fabrics based on colloidal photonic crystals[D]. Shanghai: East China Normal University, 2022: 11-13.
[26] LI Y, FAN Q, WANG X, et al. Shear-induced assembly of liquid colloidal crystals for large-scale structural coloration of textiles[J]. Advanced Functional Materials, 2021.DOI:10.1002/adfm.202010746.
[27] 刘国金. 纺织基材上纳米微球自组装仿生光子晶体结构生色研究[D]. 杭州: 浙江理工大学, 2017: 141-143.
LIU Guojin. Study on the color generation of bionic photonic crystal structure with self assembled nanospheres on textile substrates[D]. Hangzhou: Zhejiang Sci-Tech University, 2017: 141-143.
[28] LIU G, SHAO J, ZHANG Y, et al. Self-assembly behavior of polystyrene/methacrylic acid (P (St-MAA)) colloidal microspheres on polyester fabrics by gravitational sedimentation[J]. Journal of The Textile Institute, 2015, 106(12): 1293-1305.
[29] 柳浩, 马万彬, 栾一鸣, 等. 光子晶体结构生色碳纤维/涤纶混纺纱线的制备及其性能[J]. 纺织学报, 2023, 44(2): 159-167.
LIU Hao, MA Wanbin, LUAN Yiming, et al. Preparation and properties of photonic crystal structure chromogenic carbon fiber/polyester blended yarn[J]. Journal of Textile Research, 2023, 44 (2) : 159-167.
[30] YUAN W, LI Q, ZHOU N, et al. Structural color fibers directly drawn from colloidal suspensions with controllable optical properties[J]. ACS applied Materials & Interfaces, 2019, 11(21): 19388-19396.
[31] GAUVREAU B, GUO N, SCHICKER K, et al. Color-changing and color-tunable photonic bandgap fiber textiles[J]. Optics Express, 2008, 16(20): 15677-15693.
pmid: 18825206
[32] ZHAO Y, LI R, WANG B, et al. Scalable structural coloration of carbon nanotube fibers via a facile silica photonic crystal self-assembly strategy[J]. ACS Nano, 2023, 17(3): 2893-2900.
[33] ZHOU N, ZHANG A, SHI L, et al. Fabrication of structurally-colored fibers with axial core-shell structure via electrophoretic deposition and their optical proper-ties[J]. ACS Macro Letters, 2013, 2(2): 116-120.
[34] 孟佳意, 李昕, 龚龑, 等. 石墨烯基光子晶体纤维的制备及性能调控[J]. 高分子学报, 2018 (3): 389-394.
MENG Jiayi, LI Xin, GONG Yan, et al. Preparation and performance regulation of graphene based photonic crystal fibers[J]. Acta Polymerica Sinica, 2018 (3): 389-394.
[35] YUAN S J, MENG W H, DU A H, et al. Direct-writing structure color patterns on the electrospun colloidal fibers toward wearable materials[J]. Chinese Journal of Polymer Science, 2019, (37): 729-736.
[36] YUAN W, ZHOU N, SHI L, et al. Structural coloration of colloidal fiber by photonic band gap and resonant Mie scattering[J]. ACS Applied Materials & Interfaces, 2015, 7(25): 14064-14071.
[37] YUAN X, XU W, HUANG F, et al. Polyester fabric coated with Ag/ZnO composite film by magnetron sputtering[J]. Applied Surface Science, 2016, 390: 863-869.
[38] YUAN X, XU W, HUANG F, et al. Structural color of polyester fabric coated with Ag/TiO2 multilayer films[J]. Surface Engineering, 2017, 33(3): 231-236.
[39] ZHAI L, HUANG Z, LUO Y, et al. Decorating aramid fibers with chemically-bonded amorphous TiO2 for improving UV resistance in the simulated extreme environment[J]. Chemical Engineering Journal, 2022.DOI:10.1016/j.cej.2022.135724.
[40] CHEN F, HUANG Y, LI R, et al. Superdurable and fire-retardant structural coloration of carbon nano-tubes[J]. Science Advances, 2022.DOI:10.1126/sciadv.abn5882.
[41] LUO Y, ZHANG Y, XING T, et al. Full-color tunable and highly fire-retardant colored carbon fibers[J]. Advanced Fiber Materials, 2023. DOI:10.1007/s42765-023-00294-4.
[42] CHEN F, YANG H, LI K, et al. Facile and effective coloration of dye-inert carbon fiber fabrics with tunable colors and excellent laundering durability[J]. ACS Nano, 2017, 11(10): 10330-10336.
doi: 10.1021/acsnano.7b05139 pmid: 28933813
[43] CHEN F, HUANG Y, LI R, et al. Bio-inspired structural colors and their applications[J]. Chemical Communications, 2021, 57(99): 13448-13464.
doi: 10.1039/d1cc04386b pmid: 34852027
[44] 陈佳颖, 田旭, 彭晶晶, 等. 针织物表面结构色的构建[J]. 纺织学报, 2020, 41(7): 117-121.
CHEN Jiaying, TIAN Xu, PENG Jingjing, et al. Construction of structural coloration on knitted fabric surface[J] Journal of Textile Research, 2020, 41 (7): 117-121.
[45] 鲁鹏, 洪思思, 林旭, 等. 活性染料/聚苯乙烯复合胶体微球的制备及其在桑蚕丝织物上的结构生色[J]. 纺织学报, 2021, 42(1): 90-95, 102.
LU Peng, HONG Sisi, LIN Xu, et al. Preparation of reactive dye/polystyrene composite colloidal microspheres and their structure coloring on silk fabrics[J]. Journal of Textile Research, 2021, 42(1): 90-95, 102.
[46] 邵建中. 高稳定性高饱和度光子晶体结构生色织物的大面积制备方法:114164661A[P]. 2022-03-11.
SHAO Jianzhong. Large area preparation method of high stability and saturation photonic crystal structure color fabric: 114164661A[P]. 2022-03-11.
[47] DROGUET B E, LIANG H L, FRKAPETESIC B, et al. Large-scale fabrication of structurally coloured cellulose nanocrystal films and effect pigments[J]. Nature Materials, 2022, 21(3): 352-358.
[48] 陈凤翔, 翟丽莎, 刘可帅, 等. 防护口罩研究进展及其发展趋势[J]. 西安工程大学学报, 2020, 34(2): 1-12.
CHEN Fengxiang, ZHAI Lisha, LIU Keshuai, et al. Research progress and development trend of protective masks[J]. Journal of Xi'an Polytechnic University, 2020, 34(2) : 1-12.
[49] XU H, LU Y F, XIANG J X, et al. A multifunctional wearable sensor based on a graphene/inverse opal cellulose film for simultaneous, in situ monitoring of human motion and sweat[J]. Nanoscale, 2018, 10(4): 2090-2098.
doi: 10.1039/c7nr07225b pmid: 29323376
[50] ZHAO K, CAO X, ALSAID Y, et al. Interactively mechanochromic electronic textile sensor with rapid and durable electrical/optical response for visualized stretchable electronics[J]. Chemical Engineering Journal, 2021.DOI:org/10.1016/j.cej.2021.130870.
[51] LI G X, SHEN H X, LI Q, et al. Fabrication of colorful colloidal photonic crystal fibers via a microfluidic spinning technique[J]. Materials Letters, 2019, 242: 179-182.
[52] NIE X, WU S, LV P, et al. Chameleon-inspired iridescent structural color textiles with reversible multiple stimulus-responsive functions[J]. Chemical Engineering Journal, 2022.DOI:org/10.1016/j.cej.2021.134410.
[53] LIU Y, SHAO C, WANG Y, et al. Bio-inspired self-adhesive bright non-iridescent graphene pigments[J]. Matter, 2019, 1(6): 1581-1591.
[54] YANG D, YE S, GE J. From metastable colloidal crystalline arrays to fast responsive mechanochromic photonic gels: an organic gel for deformation-based display panels[J]. Advanced Functional Materials, 2014, 24(21): 3197-3205.
[1] 向娇娇, 柳浩, 欧阳申珅, 马万彬, 柴丽琴, 周岚, 邵建中, 刘国金. 高疏水性双面结构生色棉织物的一步法制备[J]. 纺织学报, 2024, 45(04): 111-119.
[2] 吴伟, 纪柏林, 毛志平. 活性及分散染料染色新技术[J]. 纺织学报, 2023, 44(05): 1-12.
[3] 王晓辉, 李新阳, 李义臣, 胡敏干, 刘国金, 周岚, 邵建中. 仿生光子晶体结构生色织物的大面积连续化制备[J]. 纺织学报, 2023, 44(05): 21-28.
[4] 顾佳, 张振雄, 韩颖, 胡建臣, 张克勤. 基于光子晶体结构生色纤维的研究进展[J]. 纺织学报, 2023, 44(04): 212-221.
[5] 李月佳, 高伟洪, 杨树, 林田田, 朱婕, 赵小燕, 张之悦. 全光谱SiO2结构色薄膜的加色法制备及其光学性能[J]. 纺织学报, 2023, 44(02): 168-175.
[6] 柳浩, 马万彬, 栾一鸣, 周岚, 邵建中, 刘国金. 光子晶体结构生色碳纤维/涤纶混纺纱线的制备及其性能[J]. 纺织学报, 2023, 44(02): 159-167.
[7] 高益平, 李义臣, 王晓辉, 刘国金, 周岚, 邵敏, 邵建中. 基于液态光子晶体固定化的柔性结构生色膜制备及其性能[J]. 纺织学报, 2022, 43(12): 1-7.
[8] 张星月, 韩朋帅, 王一萌, 张耘箫, 周岚, 刘国金. 非对称润湿特性纺织基材上高稳固光子晶体的构筑[J]. 纺织学报, 2022, 43(08): 88-94.
[9] 朱小威, 韦天琛, 李亦江, 邢铁玲, 陈国强. 聚苯乙烯/铁-单宁酸配合物微球在棉织物上的结构生色[J]. 纺织学报, 2022, 43(05): 32-37.
[10] 林田田, 杨丹, 高伟洪, 张之悦, 赵小燕. 具有低角度依赖性的全可见光谱结构色薄膜的制备[J]. 纺织学报, 2022, 43(02): 149-155.
[11] 朱小威, 韦天琛, 邢铁玲, 陈国强. 非晶光子晶体结构色织物的制备及其数值模拟[J]. 纺织学报, 2021, 42(09): 90-96.
[12] 王晓辉, 李义臣, 刘国金, 唐族平, 周岚, 邵建中. 柔性光子晶体结构生色膜的制备及其光学性质[J]. 纺织学报, 2021, 42(02): 12-20.
[13] 鲁鹏, 洪思思, 林旭, 李慧, 刘国金, 周岚, 邵建中, 柴丽琴. 活性染料/聚苯乙烯复合胶体微球的制备及其在桑蚕丝织物上的结构生色[J]. 纺织学报, 2021, 42(01): 90-95.
[14] 陈佳颖, 田旭, 彭晶晶, 方彤, 高伟洪. 针织物表面结构色的构建[J]. 纺织学报, 2020, 41(07): 117-121.
[15] 刘国金, 韩朋帅, 柴丽琴, 吴钰, 李慧, 高雅芳, 周岚. 涤纶织物上自交联型P(St-NMA)光子晶体的构筑及其结构稳固性[J]. 纺织学报, 2020, 41(05): 99-104.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!