纺织学报 ›› 2024, Vol. 45 ›› Issue (10): 191-199.doi: 10.13475/j.fzxb.20230803201
刘健1,2(), 董守骏1, 王程皓1, 刘泳汝2, 潘山山1, 尹兆松1
LIU Jian1,2(), DONG Shoujun1, WANG Chenghao1, LIU Yongru2, PAN Shanshan1, YIN Zhaosong1
摘要:
针对目前多针头静电纺丝易堵塞、针头之间存在边缘效应和无针头静电纺丝供液易挥发、泰勒锥位置不可控等问题,提出一种花瓣状多尖端喷头静电纺丝方法。喷头为半封闭式结构,上半部分为圆柱直管多流道结构,下半部分为花瓣状流道扩张结构,每层的花瓣之间的间距为4 mm,能够在花瓣尖端高电场诱导作用下激发多股射流;利用COMSOL有限元分析软件对下半部分花瓣状流道扩张结构的各个参数电场强度进行模拟,研究喷头下端花瓣数量、花瓣长度和花瓣排布方式对电场均匀性的影响。结果表明:当静电纺丝喷头花瓣数量为4对(8个)、花瓣内层长度为21 mm、外层长度为20 mm、接收距离为200 mm、电压为30 kV时,电场强度平均值为5.441×106 V/m,变异系数(CV)值为5.58%,表明该静电纺丝喷头可激发较高的电场强度且分布均匀;最后采用静电纺丝设备进行纺丝实验,验证了该新型花瓣状多尖端静电纺丝喷头在静电纺丝过程中能够降低边缘效应,减小能耗,射流多且稳定可控,可进行规模化静电纺丝。
中图分类号:
[1] | LEE J, MOON S, LAHANN J, et al. Recent progress in preparing nonwoven nanofibers via needleless electrospinning[J]. Macromolecular Materials and Engineering, 2023. DOI: 10.1002/mame.202300057. |
[2] | SHI S, SI Y, HAN Y, et al. Recent progress in protective membranes fabricated via electrospinning: advanced materials, biomimetic structures, and functional applications[J]. Advanced Materials, 2022, 34(17): 1-31. |
[3] | 王艳芝. 静电纺丝技术发展简史及应用[J]. 合成纤维工业, 2018, 41(4): 52-57. |
WANG Yanzhi. Development history and application of electrospinning technology[J]. Synthetic Fiber Industry, 2018, 41(4): 52-57. | |
[4] | 刘辰昊, 卞烨, 张波. 静电纺丝纳米纤维复合材料及其在环境领域的应用[J]. 现代化工, 2023, 43(7): 63-67. |
LIU Chenhao, BIAN Ye, ZHANG Bo. Electrospinning nanofiber composites and their application in environmental field[J]. Modern Chemical Industry, 2023, 43(7): 63-67. | |
[5] | 刘鹏. 静电纺丝在生物医用材料领域的应用综述[J]. 山东纺织经济, 2020(4): 26-28, 39. |
LIU Peng. Application of electrospinning in biomedical materials[J]. Shandong Textile Economy, 2020(4): 26-28, 39. | |
[6] |
XUE J, WU T, DAI Y, et al. Electrospinning and electrospun nanofibers: methods, materials, and applications[J]. Chemical Reviews, 2019, 119(8): 5298-5415.
doi: 10.1021/acs.chemrev.8b00593 pmid: 30916938 |
[7] | 谢概, 宋庆松, 邓德鹏, 等. 无针头静电纺丝研究进展[J]. 工程塑料应用, 2014, 6(42): 117-122. |
XIE Gai, SONG Qingsong, DENG Depeng, et al. Research progress of electrospinning without needle[J]. Engineering Plastics Application, 2014, 6(42): 117-122. | |
[8] | 卓丽云, 朱自明, 郑高峰. 多射流静电纺丝稳定性的影响分析[J]. 工程塑料应用, 2020, 48(10): 59-64. |
ZHUO Liyun, ZHU Ziming, ZHENG Gaofeng. Influence analysis of multi-jet electrospinning stabi-lity[J]. Application of Engineering Plastics, 2020, 48(10): 59-64. | |
[9] | TOMASZEWSKI W, SZADKOWSKI M. Investigation of electrospinning with the use of a multi-jet electrospinning head[J]. Fibres and Textiles in Eastern Europe, 2005, 13(4): 22-26. |
[10] | 张艳萍, 张莉彦, 马小路, 等. 无针静电纺丝技术工业化进展[J]. 塑料, 2017, 46(2): 1-4. |
ZHANG Yanping, ZHANG Liyan, MA Xiaolu, et al. Progress in industrialization of needle-free electrospinning technology[J]. Plastics, 2017, 46(2): 1-4. | |
[11] |
LIU Z, ZHAO J, ZHOU L, et al. Recent progress of the needleless electrospinning for high throughput of nanofibers[J]. Recent Patents on Nanotechnology, 2019, 13(3): 164-170.
doi: 10.2174/1872210513666190426151150 pmid: 32026765 |
[12] | 付鹏飞. 贝塞尔曲线在汽车设计中的运用[J]. 企业技术发, 2012, 31(26): 46-47, 91. |
FU Pengfei. Application of Bezier curve in automobile design[J]. Enterprise Technology Development, 2012, 31(26): 46-47,91. | |
[13] | 刘延波, 周聪, 郝铭, 等. 二次分形螺线纺丝头设计及其对场强的影响[J]. 现代纺织技术, 2023, 31(3): 12-20. |
LIU Yanbo, ZHOU Cong, HAO Ming, et al. Design of secondary fractal spiral spinning head and its influence on field intensity[J]. Advanced Textile Technology, 2023, 31(3): 12-20. | |
[14] | LIU J, LIU Y, BUKHARI S H, et al. Field intensity simulation and optimization of a solid needle electrospinning device[J]. Chemical Journal of Chinese Universities, 2017, 38(6): 1011-1017. |
[15] | BAUTISTA E V, BARILLAS J L M, DUTRA Jr T V, et al. Capillary, viscous and gravity forces in gas-assisted gravity drainage[J]. Journal of Petroleum Science and Engineering, 2014, 122: 754-760. |
[16] | 李艳娟, 孙立新, 杨静芬, 等. 蒸压加气混凝土毛细吸水试验中尺寸效应的影响研究[J]. 建筑节能, 2020, 48(9): 71-73, 138. |
LI Yanjuan, SUN Lixin, YANG Jingfen, et al. Study on the influence of size effect on capillary water absorption test of autoclaved aerated concrete[J]. Building Energy Conservation, 2020, 48(9): 71-73, 138. |
[1] | 张佃平, 王昊, 林文峰, 王振秋. 多喷头纺丝装置的仿真与设计[J]. 纺织学报, 2024, 45(10): 200-207. |
[2] | 王浩然, 于影, 左雨欣, 顾志清, 卢海龙, 陈洪立, 柯俊. 聚乙烯亚胺/聚丙烯腈复合纤维薄膜的制备及其功能化应用[J]. 纺织学报, 2024, 45(09): 26-32. |
[3] | 王清鹏, 张海艳, 王雨婷, 张涛, 赵燕. 聚环氧乙烷/Al2O3被动辐射降温膜的制备及其性能[J]. 纺织学报, 2024, 45(09): 33-41. |
[4] | 杨硕, 赵朋举, 程春祖, 李晨暘, 程博闻. 非对称润湿性纤维复合膜的制备及其油水分离性能[J]. 纺织学报, 2024, 45(08): 10-17. |
[5] | 王永政, 黄林涛, 宋付权. 石油沥青/聚丙烯腈静电纺碳纳米纤维的制备工艺优化及其性能[J]. 纺织学报, 2024, 45(08): 107-115. |
[6] | 闫迪, 王雪芳, 谭文萍, 高国金, 明津法, 宁新. 富咪唑型多孔左旋聚乳酸纳米纤维膜制备及其双重净水性能[J]. 纺织学报, 2024, 45(08): 116-126. |
[7] | 陈灿, 拖晓航, 王迎. 取向聚氨酯纳米纤维膜卷纱的制备及其力学性能[J]. 纺织学报, 2024, 45(08): 134-141. |
[8] | 钱洋, 张璐, 李晨阳, 王荣武. 静电纺海藻酸钠复合纳米纤维膜制备及其性能[J]. 纺织学报, 2024, 45(08): 18-25. |
[9] | 刘嘉炜, 季东晓, 覃小红. 空气过滤用静电纺纳米纤维材料研究进展[J]. 纺织学报, 2024, 45(08): 35-43. |
[10] | 刘德龙, 王红霞, 林童. 气流辅助的静电纺丝技术研究进展[J]. 纺织学报, 2024, 45(08): 44-53. |
[11] | 于承浩, 王元非, 于腾波, 吴桐. 热致自卷曲左旋聚乳酸/聚乳酸-羟基乙酸共聚物纳米纤维血管支架制备及其性能[J]. 纺织学报, 2024, 45(07): 18-23. |
[12] | 于雯, 邓南平, 唐湘泉, 康卫民, 程博闻. 静电溶吹微纳无机纤维制备技术及其应用进展[J]. 纺织学报, 2024, 45(07): 230-239. |
[13] | 刘思彤, 金丹, 孙东明, 李懿轩, 王艳慧, 王静, 王原. 静电纺纳米纤维结构的研究进展[J]. 纺织学报, 2024, 45(06): 201-209. |
[14] | 徐振凯, 马鸣, 蔺多佳, 刘航, 张剑峰, 夏鑫. 自支撑聚吡咙基碳纤维负极材料的制备及其电化学性能[J]. 纺织学报, 2024, 45(06): 23-31. |
[15] | 时吉磊, 陈廷彬, 付少海, 张丽平. 低红外发射率控温热红外伪装材料的制备与性能[J]. 纺织学报, 2024, 45(06): 32-38. |
|