纺织学报 ›› 2024, Vol. 45 ›› Issue (10): 103-112.doi: 10.13475/j.fzxb.20230805501
韩炜1, 邢晓梦1,2, 张海宝3, 姜茜1,2, 刘天威1, 卢佳浩3, 闫志强3, 巩继贤1, 吴利伟1,2,3()
HAN Wei1, XING Xiaomeng1,2, ZHANG Haibao3, JIANG Qian1,2, LIU Tianwei1, LU Jiahao3, YAN Zhiqiang3, GONG Jixian1, WU Liwei1,2,3()
摘要:
为快速获取纬编针织物JCA(Johnson-Champoux-Allard)模型参数,建立材料、结构与模型函数关系,实现吸声性能预估,提出迭代次数少、可快速达到全局最优解的粒子群算法对JCA模型进行反分析求解,并以吸声系数实验值和设定值差值平方和的最小值为适应度函数,设置约束,添加学习因子与惯性权重对反分析过程进行限制,多次迭代得到孔隙率、流阻率、曲折因子、黏性特征长度与热特征长度的数值;然后建立JCA模型参数(孔隙率与流阻率)与针织物结构参数(未充满系数)的函数关系,以达到快速获取不同结构针织物JCA模型参数,进而对其吸声情况进行预估的目的;最后,用有限元方法对快速获得的JCA模型参数准确性进行验证。结果表明:基于粒子群算法可精确获得针织物JCA模型的5种参数,迭代次数少于200;针对纬平针组织不同规格,未充满系数可直接换算结构参数(孔隙率与流阻率),结合已知材料参数(曲折因子、黏性特征长度与热特征长度)快速计算出纬平针组织和双反面组织的吸声系数曲线发现,吸声系数曲线拟合度较高,R2分别为0.809和0.852。
中图分类号:
[1] | WU L W, XING X M, GONG J X, et al. Experimental and finite element analysis on the sound absorption performance of wedge-like knitted composite[J]. Thin-Walled Structures, 2023. DOI:10.1016/j.tws.2022.110289. |
[2] | THOMPSON R, SMITH R B, KARIM Y B, et al. Noise pollution and human cognition: an updated systematic review and meta-analysis of recent evi-dence[J]. Environment International, 2022, DOI: 10.1016/j.envint.2021.106905. |
[3] | TAO Y P, REN M S, ZHANG H, et al. Recent progress in acoustic materials and noise control strategies: a review[J]. Applied Materials Today, 2021. DOI: 0.10161/j.apmt.2021.101141. |
[4] | 周泠卉, 曾佩, 鲁瑶, 等. 聚乙烯醇纳米纤维膜/罗纹空气层织物复合吸声材料的制备及其性能[J]. 纺织学报, 2023, 44(3): 73-78. |
ZHOU Linghui, ZENG Pei, LU Yao, et al. Preparation and properties of polyvinyl alcohol nanofibre membrane/ribbed air-layer fabric composite acoustic absorbers[J]. Journal Textile Research, 2023, 44(3): 73-78. | |
[5] | CHAMPOUX Y, ALLARD J. Dynamic tortuosity and bulk modulus in air-saturated porous media[J]. Journal of Applied Physics, 1991, 70(4): 1975-1979. |
[6] | 李箫, 荆妙蕾, 梁周珍, 等. 具有吸声效果的室内装饰纺织品的设计开发[J]. 毛纺科技, 2022, 50(12): 18-25. |
LI Xiao, JING Miaolei, LIANG Zhouzhen, et al. Design and development of upholstery textiles with sound-absorbing effect[J]. Wool Textile Technology, 2022, 50(12): 18-25. | |
[7] | VELAYUTHAM T, MANICKAM R K, SUNDAR-ARAJAN P, et al. A study on the effect of natural regenerated and synthetic non-woven fabric properties on acoustic applications[J]. Journal of Natural Fibers, 2021, 19(2): 6553-6563. |
[8] |
沈岳, 蒋高明, 刘其霞. 梯度结构活性碳纤维毡吸声性能分析[J]. 纺织学报, 2020, 41(10): 29-33.
doi: 10.13475/j.fzxb.20191205805 |
SHEN Yue, JIANG Gaoming, LIU Qixia. Analysis of acoustic performance of activated carbon fibre mats with gradient structure[J]. Journal of Textile Research, 2020, 41(10): 29-33.
doi: 10.13475/j.fzxb.20191205805 |
|
[9] | DELANY M E, BAZLEY E N. Acoustical properties of fibrous absorbent materials[J]. The Journal of the Acoustical Society of America, 1970, 48(2): 105-116. |
[10] | WILSON D K. Relaxation-matched modeling of propagation through porous media, including fractal pore structure[J]. Acoustical Society of America Journal, 1993, 94(2): 1136-1145. |
[11] | CHAMPOUX Y, ALLARD J. Dynamic tortuosity and bulk modulus in air-saturated porous media[J]. Journal of Applied Physics, 1991, 70(4): 1975-1979. |
[12] | ALLARD J, CHAMPOUX Y. New empirical equations for sound propagation in rigid frame fibrous mate-rials[J]. Journal of the Acoustical Society of America, 1998, 91(6): 3346-3353. |
[13] | JOHNSON D L. Theory of dynamic permeability and tortuosity in fluid-saturated porous media[J]. Journal of Fluid Mechanics, 1987, 176(176): 379-402. |
[14] | OLNY X, PANNETON R. Acoustical determination of the parameters governing thermal dissipation in porous media[J]. The Journal of the Acoustical Society of America, 2008, 123(2): 814-824. |
[15] | PANNETON R, OLNY X. Acoustical determination of the parameters governing viscous dissipation in porous media[J]. The Journal of the Acoustical Society of America, 2006, 119(4): 2027-2040. |
[16] | 郑丽君, 闫勇, 胡永辉, 等. 基于物理参数反演的木质颗粒声学特性研究[J]. 新能源进展, 2021, 9(4): 282-287. |
ZHENG Lijun, YAN Yong, HU Yonghui, et al. Research on acoustic properties of wood particles based on inversion of physical parameters[J]. New Energy Progress, 2021, 9(4): 282-287. | |
[17] | 周文璐, 林萍, 徐晓美, 等. 黄麻纤维毡吸声特性及其在汽车上的应用[J]. 林业工程学报, 2021, 6(3): 113-119. |
ZHOU Wenlu, LIN Ping, XU Xiaomei, et al. Acoustic properties of jute fibre mats and their application to automobiles[J]. Journal of Forest Engineering, 2021, 6(3): 113-119. | |
[18] | 吴量, 张文静, 张卜, 等. 多孔聚氨酯吸声材料声学参数逆推方法研究[J]. 软件导刊, 2021, 20(11): 82-86. |
WU Liang, ZHANG Wenjing, ZHANG Bu, et al. Inverse extrapolation of acoustic parameters of porous polyurethane acoustic materials[J]. Software Journal, 2021, 20(11): 82-86. | |
[19] | ATALLA Y, PANNETON R. Inverse acoustical characterization of open cell porous media using impedance tube measurements[J]. Optik International Journal for Light & Electron Optics, 2005. DOI: 10.1016/j.ijleo.2015.10.099. |
[20] | CHANLERT P, TONGYOO S, RORDRAK C. Effects of urea-formaldehyde and polyvinyl acetate adhesive on sound absorption coefficient and sound transmission loss of palmyra palm fruit fiber composites[J]. Applied Acoustics, 2022. DOI: ARTN10898410.1016/j.apacoust.2022.108984. |
[21] | BIOT M A. Theory of propagation of elastic waves in a fluid-saturated porous solid I: low-requency range[J]. Journal of the Acoustical Society of America, 2005, 28(2): 179-191. |
[22] | 李瑞锋. 陶瓷空心球多孔材料吸声结构设计与声学机理研究[D]. 哈尔滨: 哈尔滨工业大学, 2015:1-50. |
LI Ruifeng. Research on the design of sound-absorbing structure and acoustic mechanism of ceramic hollow sphere porous material[D]. Harbin:Harbin Institute of Technology, 2015:1-50. | |
[23] | 李玉, 温华兵, 赵震宇, 等. 多孔泡沫吸声材料微结构对声学特性的影响分析[J]. 噪声与振动控制, 2022, 42(6): 66-72. |
LI Yu, WEN Huabing, ZHAO Zhenyu, et al. Analysis of the effect of microstructure on acoustic properties of porous foam acoustic materials[J]. Noise and Vibration Control, 2022, 42(6): 66-72. | |
[24] | 陈文清. 多孔材料参数反演及其在消声器仿真中的应用[D]. 贵州: 贵州大学, 2018:1-48. |
CHEN Wenqing. Parameter inversion of porous materials and its application in muffler simulation[D]. Guizhou: Guizhou University, 2018:1-48. | |
[25] | 温晓丹, 李辉芹, 张楠, 等. 纺织材料降噪性能的检测与评价[J]. 针织工业, 2020(8): 71-75. |
WEN Xiaodan, LI Huiqin, ZHANG Nan, et al. Detection and evaluation of noise reduction performance of textile materials[J]. Knitting Industries, 2020(8): 71-75. | |
[26] | 于长帅, 罗忠, 骆海涛, 等. 多孔吸声材料声学模型及其特征参数测试方法研究进展[J]. 材料导报, 2022, 36(4): 226-236. |
YU Changshuai, LUO Zhong, LUO Haitao, et al. Advances in acoustic modelling of porous acoustic materials and their characteristic parameter testing methods[J]. Materials Research, 2022, 36(4): 226-236. | |
[27] | 王营, 赵武, 黄丹. 多孔材料声学模型及其应用[J]. 材料导报, 2015, 29(5): 145-149. |
WANG Ying, ZHAO Wu, HUANG Dan. Acoustic modelling of porous materials and its applications[J]. Materials Herald, 2015, 29(5): 145-149. | |
[28] | 薛洪波, 伦淑娴. 粒子群算法在多目标优化中的应用综述[J]. 渤海大学学报(自然科学版), 2009, 30(3): 265-269. |
XUE Hongbo, LUN Shuxian. A review on the application of particle swarm algorithm in multi-objective optimisation[J]. Journal of Bohai University (Natural Science Edition), 2009, 30(3): 265-269. | |
[29] |
FAKHOURI H N, HUDAIB A, SLEIT A. Multivector particle swarm optimization algorithm[J]. Soft Computing, 2020, 24(15): 11695-11713.
doi: 10.1007/s00500-019-04631-x |
[30] | TRIVEDI V, VARSHNEY P, RAMTEKE M. A simplified multi-objective particleswarm optimization algorithm[J]. Swarm Intelligence, 2020, 14(2): 83-116. |
[31] | 林焰, 辛登月, 卞璇屹, 等. 改进自适应惯性权重粒子群算法及其在核动力管道布置中的应用[J]. 中国舰船研究, 2023, 18(3): 1-12. |
LIN Yan, XIN Dengyue, BIAN Xuanyi, et al. Improvement of adaptive inertia weight particle swarm algorithm and its application in nuclear power pipeline arrangement[J]. China Ship Research, 2023, 18(3): 1-12. | |
[32] | DESHMUKH S, RONGE H, RAMAMOORTHY S. Design of periodic foam structures for acoustic applications: concept, parametric study and experimental validation[J]. Materials & Design, 2019. DOI:10.1016/j.matdes.2019.107830. |
[33] | ALLARD J F, DAIGLE G. Propagation of sound in porous media: modeling sound absorbing materials[J]. The Journal of the Acoustical Society of America, 1994, 95(5):2785-2785. |
[34] | 张福林, 董玲抒, 李忠盛, 等. 材料声学特性的典型参数测试技术研究进展[J]. 装备环境工程, 2020, 17(8): 131-139. |
ZHANG Fulin, DONG Lingyu, LI Zhongsheng, et al. Progress of typical parametric testing techniques for acoustic properties of materials[J]. Equipment Environmental Engineering, 2020, 17(8): 131-139. | |
[35] | KINO N. Further investigations of empirical improvements to the Johnson-Champoux-Allard model[J]. Applied Acoustics, 2015, 96: 153-170. |
[36] | 李小倩, 刘让同, 耿长军, 等. 织物的孔隙特征与透气透湿性研究[J]. 棉纺织技术, 2019, 47(11): 17-20. |
LI Xiaoqian, LIU Rangtong, GENG Changjun, et al. Research on pore characteristics and air and moisture permeability of fabrics[J]. Cotton Textile Technology, 2019, 47(11): 17-20. | |
[37] | 钱娟, 谢婷, 张佩华, 等. 聚乙烯针织物的热湿舒适性能[J]. 纺织学报, 2022, 43(7): 60-66. |
QIAN Juan, XIE Ting, ZHANG Peihua, et al. Thermal and humidity comfort properties of polyethylene knitted fabrics[J]. Journal of Textile Research, 2022, 43(7): 60-66. | |
[38] | 赵超, 杨彩云. 弯纱深度与针织物结构参数及导热系数间的关系[J]. 国际纺织导报, 2015, 43(11): 22-26. |
ZHAO Chao, YANG Caiyun. Relationship between yarn bending depth and knitted fabric structural parameters and thermal conductivity[J]. Melliand China, 2015, 43(11): 22-26. | |
[39] | ELTAHAN E A E, SULTAN M, MITO A B. Determination of loop length, tightness factor and porosity of single jersey knitted fabric[J]. Alexandria Engineering Journal, 2016, 55(2): 851-856. |
[40] | 孙曙光. 纬编针织物工艺参数的计算[J]. 针织工业, 2009(7): 10-12. |
SUN Shuguang. Calculation of process parameters of weft knitted fabrics[J]. Knitting Industries, 2009(7): 10-12. | |
[41] | 陈香云, 白小茹. 棉针织物基本性能与热湿舒适性能的关系[J]. 针织工业, 2013(3): 16-19. |
CHEN Xiangyun, BAI Xiaoru. Relationship between basic properties and thermal and humidity comfort performance of cotton knitted fabrics[J]. Knitting Industries, 2013(3): 16-19. | |
[42] | MONJOIE F S, GARNIR H P. Fit of a sum of exponential functions to experimental data points[J]. Computer Physics Communications, 1993, 74(1): 1-8. |
[43] | 冯元珍, 屠小明, 罗建平. MatLab软件在曲线拟合中的应用[J]. 福建电脑, 2007(3): 109,160. |
FENG Yuanzhen, TU Xiaoming, LUO Jianping. Application of MatLab software in curve fitting[J]. Fujian Computer, 2007(3): 109,160. | |
[44] | YANG X, YANG F, SHEN X, et al. Development of adjustable parallel helmholtz acoustic metamaterial for broad low-frequency sound absorption band[J]. Materials (Basel), 2022. DOI: ARTN593810.3390/ma15175938. |
[1] | 胡旭东, 汤炜, 曾志发, 汝欣, 彭来湖, 李建强, 王博平. 基于轻量化卷积神经网络的纬编针织物组织结构分类[J]. 纺织学报, 2024, 45(05): 60-69. |
[2] | 南静静, 杜明娟, 孟家光, 余灵婕, 支超. 海水老化下类填充微穿孔板结构水下吸声材料的性能及其寿命预测[J]. 纺织学报, 2024, 45(02): 85-92. |
[3] | 常辰玉, 王雨薇, 原旭阳, 刘锋, 卢致文. 基于交织点改进弹簧-质点模型的纬编针织物动态变形模拟[J]. 纺织学报, 2024, 45(01): 99-105. |
[4] | 谭启飞, 陈梦莹, 马晟晟, 孙明祥, 代春鹏, 罗仑亭, 陈益人. 湖羊毛非织造阻燃吸声材料的制备及其性能[J]. 纺织学报, 2023, 44(05): 147-154. |
[5] | 周泠卉, 曾佩, 鲁瑶, 付少举. 聚乙烯醇纳米纤维膜/罗纹空气层织物复合吸声材料的制备及其性能[J]. 纺织学报, 2023, 44(03): 73-78. |
[6] | 吕丽华, 李臻. 废弃玉米秸秆的结构特征及其吸声性能[J]. 纺织学报, 2022, 43(12): 42-47. |
[7] | 汝欣, 朱婉珍, 史伟民, 彭来湖. 密度非均匀分布纬编针织物的变形预测及仿真[J]. 纺织学报, 2022, 43(06): 63-69. |
[8] | 吕丽华, 李臻, 张多多. 废弃秸秆/聚己内酯吸声复合材料的制备与性能[J]. 纺织学报, 2022, 43(01): 28-35. |
[9] | 胡旭东, 宋炎锋, 汝欣, 彭来湖. 大小头筒状纬编针织物建模及其线圈长度逆向设计[J]. 纺织学报, 2021, 42(04): 80-84. |
[10] | 刘立东, 李新荣, 刘汉邦, 李丹丹. 基于纬编针织物特性的静电吸附力模型[J]. 纺织学报, 2021, 42(03): 161-168. |
[11] | 孙亚博, 李立军, 马崇启, 吴兆南, 秦愈. 基于ABAQUS的筒状纬编针织物拉伸力学性能模拟[J]. 纺织学报, 2021, 42(02): 107-112. |
[12] | 吕丽华, 刘英杰, 郭静, 王滢, 毕吉红, 叶方. 废弃羽毛的结构特征及其吸声性能[J]. 纺织学报, 2020, 41(01): 32-38. |
[13] | 韩晓雪, 缪旭红. 氨纶纬编导电针织物纵向电力学性能[J]. 纺织学报, 2019, 40(04): 60-65. |
[14] | 李长伟 吕丽华. 废弃羊毛吸声复合材料的制备及其性能[J]. 纺织学报, 2018, 39(10): 74-80. |
[15] | 闫亦农 刘立枝 雒彬钰 崔慧荣. 基于粒子群算法的服装生产流水线编制[J]. 纺织学报, 2018, 39(10): 120-124. |
|