纺织学报 ›› 2024, Vol. 45 ›› Issue (11): 1-9.doi: 10.13475/j.fzxb.20230805601

• 纤维材料 •    下一篇

丝素纳米原纤增强再生丝素蛋白/聚乙烯醇纤维的结构与性能

杨鑫1, 张昕1,2, 潘志娟1,2()   

  1. 1.苏州大学 纺织与服装工程学院, 江苏 苏州 215021
    2.苏州大学 现代丝绸国家工程实验室, 江苏 苏州 215123
  • 收稿日期:2023-08-25 修回日期:2024-04-28 出版日期:2024-11-15 发布日期:2024-12-30
  • 通讯作者: 潘志娟(1967—),女,教授,博士。主要研究方向为新型纺织材料及产品开发。E-mail:zhjpan@suda.edu.cn
  • 作者简介:杨鑫(1998—),女,硕士生。主要研究方向为新型纺织材料开发。
  • 基金资助:
    江苏省卓越博士后计划(2023ZB420);江苏省丝绸工程重点实验室开放课题(KJS2314)

Structure and properties of fibroin nanofibril reinforced regenerated silk protein/polyvinyl alcohol fiber

YANG Xin1, ZHANG Xin1,2, PAN Zhijuan1,2()   

  1. 1. College of Textile and Clothing Engineering, Soochow University, Suzhou, Jiangsu 215021, China
    2. National Engineering Laboratory for Modern Silk, Soochow University, Suzhou, Jiangsu 215123, China
  • Received:2023-08-25 Revised:2024-04-28 Published:2024-11-15 Online:2024-12-30

摘要: 为拓展废旧蚕丝高值化回收再利用形式,提高再生丝素蛋白纤维的力学性能,以废旧蚕丝为原料制备了丝素纳米原纤(SFNF)、再生废旧蚕丝丝素蛋白(RRSF),并与聚乙烯醇(PVA)共混制备了共混纤维,探究了SFNF作为增强材料对纤维微观结构与力学性能的影响。结果表明:SFNF的加入提高了RRSF与PVA的相容性,共混溶液的均匀性和稳定性显著提高;在RRSF/PVA/SFNF共混纤维中少量添加SFNF可诱导分子构象从α-螺旋向β-折叠转变,提高纤维结晶度,当SFNF的质量分数为0.2%时,共混纤维内β-折叠含量增加,达到最大值54.42%,α-螺旋含量降至20.03%;SFNF显著增强共混纤维的拉伸性能与韧性,断裂应力可达到38.98 MPa,断裂伸长率可达到443.27%,初始模量可达到640.83 MPa,断裂比功可达到133.50 N/mm2

关键词: 自增强, 丝素纳米原纤, 再生丝素蛋白纤维, 废旧蚕丝, 力学性能, 聚乙烯醇

Abstract:

Objective Extracting silk fibroin protein from waste silk to prepare recycled fiber is one of the approaches to recycle waste silk, but the mechanical properties of recycled fiber are generally poor. Therefore, it is necessary to explore new methods to improve the mechanical properties of recycled silk fibroin fibers and achieve the high-value recovery and reuse of waste silk.

Method The silk fibroin nanofibrillar fiber (SFNF) and the recycled silk fibroin (RRSF) extracted from waste silk were blended with polyvinyl alcohol (PVA) to prepare the blending solution. The effect of SFNF on the properties of the blended solution was investigated, the RRSF/PVA/SFNF blended fibers were prepared by dry spray wet spinning process and the effects of SFNF on the microstructure and mechanical properties of the blended fibers were investigated.

Results The SFNF was obtained after mechanical grinding and filter screen filtration of degumming waste silk, with length distribution between 20 and 90 μm and diameter distribution between 30 and 100 nm. The SFNF crystal obtained by mechanical grinding is not damaged and still retains the original crystalline structure of silk fibroin. RRSF/PVA/SFNF blended solution were non-Newtonian fluids with obvious shear thinning properties. With the increase of SFNF addition, the shear viscosity and shear stress of the blended solution was increased, and the elastic and viscous characteristics of the solution were enhanced. When the amount of SFNF was greater than 0.3%, the viscosity of the solution was obvious and gelation was easy to occur. Besides, SFNF significantly improved the stability and uniformity of the blended membrane. After the addition of SFNF, the pore structure inside the blended fibers was changed and the number of pores were increased. A small amount of SFNF induced the molecular conformation change from α-helix structure to β-fold structure. When the addition amount was 0.2%, the α-helix content reached the minimum of 20.03%, and the β-fold content reached the maximum of 54.42%. The fiber crystallinity was increased first and then decreased with the increase of SFNF addition. The addition of SFNF effectively enhanced the tensile strength and toughness of the blend fibers. When the amount of addition was 0.2%, the RRSF/PVA/SFNF blended fiber demonstrated a breaking strength of 38.98 MPa, an elongation at break of 443.27%, a modulus of elasticity of 640.83 MPa, and a specific work of fracture of 133.50 N/mm2.

Conclusion The preparation method of SFNF is environmentally friendly, simple and efficient, which makes it an ideal fiber reinforcement material for regenerative silk fibroin protein. The compatibility of RRSF and PVA was improved, and the uniformity and stability of the blends were enhanced when SFNF was added to the RRSF/PVA blended solution. The compatibility of RRSF and PVA was improved when SFNF was added to the RRSF/PVA blended solution as a reinforcing material. The addition of a small amount of SFNF to RRSF/PVA/SFNF blend fiber was found to have improve the crystallinity of the blend fiber, and significantly improving the tensile properties and toughness of the blend fiber. The SFNF reinforced RRSF/PVA/SFNF blend fiber has good mechanical properties and biocompatibility, which can be further explored in the field of biomedical materials.

Key words: self-reinforce, silk fibroin nanofibril, regenerated silk fibroin fiber, waste silk, mechanical property, polyvinyl alcohol

中图分类号: 

  • TS149

图1

RRSF/PVA/SFNF共混纤维的纺丝工艺流程"

图2

SFNF的宏观、微观形貌及长度与直径分布"

图3

SFNF的X射线衍射图"

图4

RRSF/PVA/SFNF共混溶液的流变性能"

图5

共混膜光学照片"

图6

RRSF/PVA/SFNF共混膜的激光共聚焦照片"

图7

RRSF/PVA/SFNF共混纤维的表面和截面形貌照片"

图8

RRSF/PVA/SFNF共混纤维的红外全谱及RRSF特征峰局部放大图"

图9

酰胺Ⅰ处丝素蛋白分子构象分峰拟合示意图"

表1

酰胺Ⅰ处丝素蛋白分子构象含量定量分析结果"

样品编号 α-螺旋 β-折叠 β-转角 无规卷曲
S0.0 23.61 50.37 13.41 12.62
S0.1 22.38 52.63 14.91 10.07
S0.2 20.03 54.42 13.96 11.59
S0.3 24.79 49.92 12.99 12.30

图10

RRSF/PVA/SFNF共混纤维的X射线衍射图"

表2

RRSF/PVA/SFNF共混纤维的力学性能测试结果"

样品
编号
断裂伸长率/
%
断裂应力/
MPa
初始模量/
MPa
断裂比功/
(N·mm-2)
S0.0 499.02 30.17 351.48 90.11
S0.1 481.83 35.62 508.34 116.18
S0.2 443.27 38.98 640.83 133.50
S0.3 402.79 29.00 391.98 80.08
[24] SCHAEFER C, LAITY P R, HOLLAND C, et al. Silk protein solution: anatural example of sticky reptation[J]. Macromolecules, 2020, 53(7): 2669-2676.
[25] POGGI G, CHELAZZI D, LAURATI M. Mechanical response and yielding transition of silk-fibroin and silk-fibroin/cellulose nanocrystals composite gels[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 636: 1-10.
[26] LING S J, QI Z M, KNIGHT D P, et al. FTIR imaging, a useful method for studying the compatibility of silk fibroin-based polymer blends[J]. Polymer Chemistry, 2013, 4(21): 5401-5406.
[27] QIU W, PATIL A, HU F, et al. Hierarchical structure of silk materials versus mechanical performance and mesoscopic engineering principles[J]. Small, 2019, 15(51): 1-45.
[1] SABAREES G, TAMILARASI G P, VELMURUGAN V, et al. Emerging trends in silk fibroin based nanofibers for impaired wound healing[J]. Journal of Drug Delivery Science and Technology, 2023, 79: 1-26.
[2] LEE H, PARK S J, LEE M E, et al. Fabrication of nanofibers using fibroin regenerated by recycling waste silk selvage[J]. Polymer Bulletin, 2020, 77(7): 3853-3862.
[3] 黎麟玉, 严小飞, 田伟. 再生蚕丝蛋白纤维的湿法制备及医学应用现状[J]. 棉纺织技术, 2022, 50(8): 80-84.
LI Linyu, YAN Xiaofei, TIAN Wei. Wet spinning preparation and medical application status of regenerated silk protein fiber[J]. Cotton Textile Technology, 2022, 50(8): 80-84.
[4] SATOH R, MORINAGA T, SATO T. Novel dry spinning process of natural macromolecules for sustainable fiber material-1-proof of the concept using silk fibroin[J]. Materials, 2022, 15(12): 41-95.
[5] WANG L P, PATHAK J L, LIANG D L, et al. Fabrication and characterization of strontium-hydroxyapatite/silk fibroin biocomposite nanospheres for bone-tissue engineering applications[J]. International Journal of Biological Macromolecules, 2020, 142: 366-375.
doi: S0141-8130(19)35789-7 pmid: 31593715
[6] 李莹莹, 王昉, 刘其春, 等. 丝素蛋白及其复合材料的研究进展[J]. 材料工程, 2018, 46(8): 14-26.
doi: 10.11868/j.issn.1001-4381.2017.001242
LI Yingying, WANG Fang, LIU Qichun, et al. Research progress in silk fobroin and its composite materials[J]. Journal of Materials Engineering, 2018, 46(8): 14-26.
doi: 10.11868/j.issn.1001-4381.2017.001242
[7] 张鸿昊, 林乃波, 刘向阳. 蚕丝和蜘蛛丝多级结构对力学性能的影响[J]. 功能高分子学报, 2018, 31(6): 501-512.
ZHANG Honghao, LIN Naibo, LIU Xiangyang. Effects of multi-level structure of silk and spider silk on mechanical properties[J]. Journal of Functional Polymers, 2018, 31(6): 501-512.
[8] LIANG Y T, ZOU Y K, WU S Q, et al. Preparation and properties of chitin/silk fibroin biocompatible composite fibers[J]. Journal of Biomaterials Science-Polymer Edition, 2023, 34(7): 860-874.
[9] HON M P, WANG H, LAU K T, et al. Interfacial bonding and degumming effects on silk fibre/polymer biocomposites[J]. Composites Part B-Engineering, 2012, 43(7): 2801-2812.
[10] GUO J J, YANG B, MA Q, et al. Photothermal regenerated fibers with enhanced toughness: silk fibroin/MoS2nanoparticles[J]. Polymers, 2021, 13(22): 1-14.
[11] GUO J J, XU C, YANG B, et al. The size effect of silver nanoparticles on reinforcing the mechanical properties of regenerated fibers[J]. Molecules, 2023, 28(4):17-50.
[12] UDDIN M G, ALLARDYCE B J, RASHIDA N, et al. Mechanical, structural and biodegradation characteristics of fibrillated silk fibres and papers[J]. International Journal of Biological Macromolecules, 2021, 179: 20-32.
doi: 10.1016/j.ijbiomac.2021.02.211 pmid: 33667557
[13] DING Z Z, LU G Z, CHENG W N, et al. Tough anisotropic silk nanofiber hydrogels with osteoinductive capacity[J]. Acs Biomaterials Science & Engineering, 2020, 6(4): 2357-2367.
[14] YAO Y, ALLARDYCE B J, RAJKHOWA R, et al. Toughening wet-spun silk fibers by silk nanofiber templating[J]. Macromolecular Rapid Communications, 2022, 43(7): 1-9.
[15] LIU S S, CHEN J, LIN X D, et al. Construction and antibacterial application of drug-loading chitosan/silk nanofiber multilayer film[J]. Acta Polymerica Sinica, 2022, 53(12): 1459-1465.
[16] HAMIDI Y K, YALCINKAYA M A, GULOGLU G E, et al. Silk as a natural reinforcement: processing and properties of silk/epoxy composite laminates[J]. Materials, 2018, 11(11): 21-35.
[17] XIAO J H, LI L, YOU H N, et al. Silk nanofibrils/chitosan composite fibers with enhanced mechanical properties[J]. Polymer Engineering and Science, 2023, 63(2): 379-386.
[18] ZHANG X, PAN Z J. Microstructure transitions and dry-wet spinnability of silk fibroin protein from waste silk quilt[J]. Polymers, 2019, 11(10): 1-14.
[19] ZHANG X, PAN Z J. Preparation and formation mechanism analysis of regenerated silk fibroin/polyvinyl alcohol blended fibers with waste silk quilt[J]. Fibers and Polymers, 2022, 23(8): 2090-2102.
[20] 张昕. 废旧蚕丝/聚乙烯醇复合纤维的成型机理及其结构性能与应用[D]. 苏州: 苏州大学, 2022: 52-71.
ZHANG Xin. Formation mechanism, structure, properties and application of RRSF/PVA blended fibers[D]. Suzhou: Soochow University, 2022: 52-71.
[21] 左保齐, 张锋, 孙春光, 等. 再生桑蚕丝素/柞蚕丝素蛋白静电纺无纺网结构的研究[J]. 高分子材料科学与工程, 2007(4):207-210.
ZUO Baoqi, ZHANG Feng, SUN Chunguang, et al. Research on the structure of non-woven mat electrospun regenerated SF/TSF solution[J]. Polymer Materials Science and Engineering, 2007(4):207-210.
[22] GUNAPU D, PRASAD Y B, MUDIGUNDA V S, et al. Development of robust, ultra-smooth, flexible andtransparent regenerated silk composite films forbio-integrated electronic device applications[J]. International Journal of Biological Macromolecules, 2021, 176: 498-509.
[23] ZHANG X, PAN Z J. Rheological behavior of regenerated silk fibroin/polyvinyl alcohol blended solutions in steady and dynamic state and the effect of temperature[J]. Journal of Materials Science, 2020, 55(31): 15350-15363.
[1] 卢海龙, 于影, 左雨欣, 王浩然, 陈洪立, 汝欣. 取向增强抗CO2腐蚀纤维薄膜的制备及其性能[J]. 纺织学报, 2024, 45(12): 33-40.
[2] 缪璐璐, 孟小奕, 董正梅, 彭倩, 何林伟, 邹专勇. 热处理工艺对喷气涡流纺低熔点涤纶长丝包芯纱力学性能的影响[J]. 纺织学报, 2024, 45(11): 73-79.
[3] 王宇航, 谭晶, 李好义, 徐锦龙, 杨卫民. 纳米纤维纱线静电纺制备技术研究进展[J]. 纺织学报, 2024, 45(11): 235-243.
[4] 李蒙, 戴梦男, 俞杨销, 王建南. 丝素蛋白基骨修复材料的应用研究进展[J]. 纺织学报, 2024, 45(10): 224-231.
[5] 刘婷, 闫涛, 潘志娟. 香蕉茎秆纤维/抗菌纤维混纺纱的制备及其性能[J]. 纺织学报, 2024, 45(10): 48-54.
[6] 王文, 张乐乐, 黄阳杰, 谭浩, 方舒婷, 向晨雪, 王栋. 聚乙烯醇-乙烯/SiO2复合柔性驱动膜的制备及其性能[J]. 纺织学报, 2024, 45(07): 10-17.
[7] 徐豫松, 周杰, 甘佳怡, 张涛, 张先明. 含磷氮水性聚氨酯的制备及其在涤纶织物阻燃整理中应用[J]. 纺织学报, 2024, 45(07): 112-120.
[8] 刘鑫, 王婵, 窦皓, 孟家光, 陈莉, 樊威. 废旧棉/纳米纤维素自增强复合纸的制备与性能[J]. 纺织学报, 2024, 45(06): 39-45.
[9] 刘术, 侯腾, 周乐乐, 李祥龙, 杨斌. 桑蚕的强制牵伸抽丝及其纤维性能[J]. 纺织学报, 2024, 45(06): 11-15.
[10] 黄晴, 苏振岳, 周一帆, 刘青松, 李懿, 赵萍, 王鑫. 饲料与桑叶饲喂的家蚕蚕丝品质分析[J]. 纺织学报, 2024, 45(05): 1-9.
[11] 谷金峻, 魏春艳, 郭紫阳, 吕丽华, 白晋, 赵航慧妍. 棉秆皮微晶纤维素/改性氧化石墨烯阻燃纤维的制备及其性能[J]. 纺织学报, 2024, 45(01): 39-47.
[12] 陈美玉, 李立凤, 董侠. 长碳链聚酰胺1012纤维在不同温度下的力学性能[J]. 纺织学报, 2023, 44(11): 9-18.
[13] 杨其亮, 杨海伟, 王邓峰, 李长龙, 张乐乐, 王宗乾. 超疏水弹性丝素蛋白纤维气凝胶的制备及其吸油性能[J]. 纺织学报, 2023, 44(09): 1-10.
[14] 姚双双, 付少举, 张佩华, 孙秀丽. 再生丝素蛋白/聚乙烯醇共混取向纳米纤维膜的制备与性能[J]. 纺织学报, 2023, 44(09): 11-19.
[15] 张颖, 宋明根, 姬洪, 陈康, 张先明. 热定形工艺对高强型聚酯工业丝结构性能的影响[J]. 纺织学报, 2023, 44(09): 43-51.
Viewed
Full text
30
HTML PDF
Just accepted Online first Issue Just accepted Online first Issue
0 0 4 0 0 26

  From Others local
  Times 11 19
  Rate 37% 63%

Abstract
101
Just accepted Online first Issue
0 0 101
  From Others local
  Times 64 37
  Rate 63% 37%

Cited

Web of Science  Crossref   ScienceDirect  Search for Citations in Google Scholar >>
 
This page requires you have already subscribed to WoS.
  Shared   
  Discussed   
No Suggested Reading articles found!