纺织学报 ›› 2024, Vol. 45 ›› Issue (11): 1-9.doi: 10.13475/j.fzxb.20230805601
• 纤维材料 • 下一篇
YANG Xin1, ZHANG Xin1,2, PAN Zhijuan1,2()
摘要: 为拓展废旧蚕丝高值化回收再利用形式,提高再生丝素蛋白纤维的力学性能,以废旧蚕丝为原料制备了丝素纳米原纤(SFNF)、再生废旧蚕丝丝素蛋白(RRSF),并与聚乙烯醇(PVA)共混制备了共混纤维,探究了SFNF作为增强材料对纤维微观结构与力学性能的影响。结果表明:SFNF的加入提高了RRSF与PVA的相容性,共混溶液的均匀性和稳定性显著提高;在RRSF/PVA/SFNF共混纤维中少量添加SFNF可诱导分子构象从α-螺旋向β-折叠转变,提高纤维结晶度,当SFNF的质量分数为0.2%时,共混纤维内β-折叠含量增加,达到最大值54.42%,α-螺旋含量降至20.03%;SFNF显著增强共混纤维的拉伸性能与韧性,断裂应力可达到38.98 MPa,断裂伸长率可达到443.27%,初始模量可达到640.83 MPa,断裂比功可达到133.50 N/mm2。
中图分类号:
[24] | SCHAEFER C, LAITY P R, HOLLAND C, et al. Silk protein solution: anatural example of sticky reptation[J]. Macromolecules, 2020, 53(7): 2669-2676. |
[25] | POGGI G, CHELAZZI D, LAURATI M. Mechanical response and yielding transition of silk-fibroin and silk-fibroin/cellulose nanocrystals composite gels[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 636: 1-10. |
[26] | LING S J, QI Z M, KNIGHT D P, et al. FTIR imaging, a useful method for studying the compatibility of silk fibroin-based polymer blends[J]. Polymer Chemistry, 2013, 4(21): 5401-5406. |
[27] | QIU W, PATIL A, HU F, et al. Hierarchical structure of silk materials versus mechanical performance and mesoscopic engineering principles[J]. Small, 2019, 15(51): 1-45. |
[1] | SABAREES G, TAMILARASI G P, VELMURUGAN V, et al. Emerging trends in silk fibroin based nanofibers for impaired wound healing[J]. Journal of Drug Delivery Science and Technology, 2023, 79: 1-26. |
[2] | LEE H, PARK S J, LEE M E, et al. Fabrication of nanofibers using fibroin regenerated by recycling waste silk selvage[J]. Polymer Bulletin, 2020, 77(7): 3853-3862. |
[3] | 黎麟玉, 严小飞, 田伟. 再生蚕丝蛋白纤维的湿法制备及医学应用现状[J]. 棉纺织技术, 2022, 50(8): 80-84. |
LI Linyu, YAN Xiaofei, TIAN Wei. Wet spinning preparation and medical application status of regenerated silk protein fiber[J]. Cotton Textile Technology, 2022, 50(8): 80-84. | |
[4] | SATOH R, MORINAGA T, SATO T. Novel dry spinning process of natural macromolecules for sustainable fiber material-1-proof of the concept using silk fibroin[J]. Materials, 2022, 15(12): 41-95. |
[5] |
WANG L P, PATHAK J L, LIANG D L, et al. Fabrication and characterization of strontium-hydroxyapatite/silk fibroin biocomposite nanospheres for bone-tissue engineering applications[J]. International Journal of Biological Macromolecules, 2020, 142: 366-375.
doi: S0141-8130(19)35789-7 pmid: 31593715 |
[6] |
李莹莹, 王昉, 刘其春, 等. 丝素蛋白及其复合材料的研究进展[J]. 材料工程, 2018, 46(8): 14-26.
doi: 10.11868/j.issn.1001-4381.2017.001242 |
LI Yingying, WANG Fang, LIU Qichun, et al. Research progress in silk fobroin and its composite materials[J]. Journal of Materials Engineering, 2018, 46(8): 14-26.
doi: 10.11868/j.issn.1001-4381.2017.001242 |
|
[7] | 张鸿昊, 林乃波, 刘向阳. 蚕丝和蜘蛛丝多级结构对力学性能的影响[J]. 功能高分子学报, 2018, 31(6): 501-512. |
ZHANG Honghao, LIN Naibo, LIU Xiangyang. Effects of multi-level structure of silk and spider silk on mechanical properties[J]. Journal of Functional Polymers, 2018, 31(6): 501-512. | |
[8] | LIANG Y T, ZOU Y K, WU S Q, et al. Preparation and properties of chitin/silk fibroin biocompatible composite fibers[J]. Journal of Biomaterials Science-Polymer Edition, 2023, 34(7): 860-874. |
[9] | HON M P, WANG H, LAU K T, et al. Interfacial bonding and degumming effects on silk fibre/polymer biocomposites[J]. Composites Part B-Engineering, 2012, 43(7): 2801-2812. |
[10] | GUO J J, YANG B, MA Q, et al. Photothermal regenerated fibers with enhanced toughness: silk fibroin/MoS2nanoparticles[J]. Polymers, 2021, 13(22): 1-14. |
[11] | GUO J J, XU C, YANG B, et al. The size effect of silver nanoparticles on reinforcing the mechanical properties of regenerated fibers[J]. Molecules, 2023, 28(4):17-50. |
[12] |
UDDIN M G, ALLARDYCE B J, RASHIDA N, et al. Mechanical, structural and biodegradation characteristics of fibrillated silk fibres and papers[J]. International Journal of Biological Macromolecules, 2021, 179: 20-32.
doi: 10.1016/j.ijbiomac.2021.02.211 pmid: 33667557 |
[13] | DING Z Z, LU G Z, CHENG W N, et al. Tough anisotropic silk nanofiber hydrogels with osteoinductive capacity[J]. Acs Biomaterials Science & Engineering, 2020, 6(4): 2357-2367. |
[14] | YAO Y, ALLARDYCE B J, RAJKHOWA R, et al. Toughening wet-spun silk fibers by silk nanofiber templating[J]. Macromolecular Rapid Communications, 2022, 43(7): 1-9. |
[15] | LIU S S, CHEN J, LIN X D, et al. Construction and antibacterial application of drug-loading chitosan/silk nanofiber multilayer film[J]. Acta Polymerica Sinica, 2022, 53(12): 1459-1465. |
[16] | HAMIDI Y K, YALCINKAYA M A, GULOGLU G E, et al. Silk as a natural reinforcement: processing and properties of silk/epoxy composite laminates[J]. Materials, 2018, 11(11): 21-35. |
[17] | XIAO J H, LI L, YOU H N, et al. Silk nanofibrils/chitosan composite fibers with enhanced mechanical properties[J]. Polymer Engineering and Science, 2023, 63(2): 379-386. |
[18] | ZHANG X, PAN Z J. Microstructure transitions and dry-wet spinnability of silk fibroin protein from waste silk quilt[J]. Polymers, 2019, 11(10): 1-14. |
[19] | ZHANG X, PAN Z J. Preparation and formation mechanism analysis of regenerated silk fibroin/polyvinyl alcohol blended fibers with waste silk quilt[J]. Fibers and Polymers, 2022, 23(8): 2090-2102. |
[20] | 张昕. 废旧蚕丝/聚乙烯醇复合纤维的成型机理及其结构性能与应用[D]. 苏州: 苏州大学, 2022: 52-71. |
ZHANG Xin. Formation mechanism, structure, properties and application of RRSF/PVA blended fibers[D]. Suzhou: Soochow University, 2022: 52-71. | |
[21] | 左保齐, 张锋, 孙春光, 等. 再生桑蚕丝素/柞蚕丝素蛋白静电纺无纺网结构的研究[J]. 高分子材料科学与工程, 2007(4):207-210. |
ZUO Baoqi, ZHANG Feng, SUN Chunguang, et al. Research on the structure of non-woven mat electrospun regenerated SF/TSF solution[J]. Polymer Materials Science and Engineering, 2007(4):207-210. | |
[22] | GUNAPU D, PRASAD Y B, MUDIGUNDA V S, et al. Development of robust, ultra-smooth, flexible andtransparent regenerated silk composite films forbio-integrated electronic device applications[J]. International Journal of Biological Macromolecules, 2021, 176: 498-509. |
[23] | ZHANG X, PAN Z J. Rheological behavior of regenerated silk fibroin/polyvinyl alcohol blended solutions in steady and dynamic state and the effect of temperature[J]. Journal of Materials Science, 2020, 55(31): 15350-15363. |
[1] | 卢海龙, 于影, 左雨欣, 王浩然, 陈洪立, 汝欣. 取向增强抗CO2腐蚀纤维薄膜的制备及其性能[J]. 纺织学报, 2024, 45(12): 33-40. |
[2] | 缪璐璐, 孟小奕, 董正梅, 彭倩, 何林伟, 邹专勇. 热处理工艺对喷气涡流纺低熔点涤纶长丝包芯纱力学性能的影响[J]. 纺织学报, 2024, 45(11): 73-79. |
[3] | 王宇航, 谭晶, 李好义, 徐锦龙, 杨卫民. 纳米纤维纱线静电纺制备技术研究进展[J]. 纺织学报, 2024, 45(11): 235-243. |
[4] | 李蒙, 戴梦男, 俞杨销, 王建南. 丝素蛋白基骨修复材料的应用研究进展[J]. 纺织学报, 2024, 45(10): 224-231. |
[5] | 刘婷, 闫涛, 潘志娟. 香蕉茎秆纤维/抗菌纤维混纺纱的制备及其性能[J]. 纺织学报, 2024, 45(10): 48-54. |
[6] | 王文, 张乐乐, 黄阳杰, 谭浩, 方舒婷, 向晨雪, 王栋. 聚乙烯醇-乙烯/SiO2复合柔性驱动膜的制备及其性能[J]. 纺织学报, 2024, 45(07): 10-17. |
[7] | 徐豫松, 周杰, 甘佳怡, 张涛, 张先明. 含磷氮水性聚氨酯的制备及其在涤纶织物阻燃整理中应用[J]. 纺织学报, 2024, 45(07): 112-120. |
[8] | 刘鑫, 王婵, 窦皓, 孟家光, 陈莉, 樊威. 废旧棉/纳米纤维素自增强复合纸的制备与性能[J]. 纺织学报, 2024, 45(06): 39-45. |
[9] | 刘术, 侯腾, 周乐乐, 李祥龙, 杨斌. 桑蚕的强制牵伸抽丝及其纤维性能[J]. 纺织学报, 2024, 45(06): 11-15. |
[10] | 黄晴, 苏振岳, 周一帆, 刘青松, 李懿, 赵萍, 王鑫. 饲料与桑叶饲喂的家蚕蚕丝品质分析[J]. 纺织学报, 2024, 45(05): 1-9. |
[11] | 谷金峻, 魏春艳, 郭紫阳, 吕丽华, 白晋, 赵航慧妍. 棉秆皮微晶纤维素/改性氧化石墨烯阻燃纤维的制备及其性能[J]. 纺织学报, 2024, 45(01): 39-47. |
[12] | 陈美玉, 李立凤, 董侠. 长碳链聚酰胺1012纤维在不同温度下的力学性能[J]. 纺织学报, 2023, 44(11): 9-18. |
[13] | 杨其亮, 杨海伟, 王邓峰, 李长龙, 张乐乐, 王宗乾. 超疏水弹性丝素蛋白纤维气凝胶的制备及其吸油性能[J]. 纺织学报, 2023, 44(09): 1-10. |
[14] | 姚双双, 付少举, 张佩华, 孙秀丽. 再生丝素蛋白/聚乙烯醇共混取向纳米纤维膜的制备与性能[J]. 纺织学报, 2023, 44(09): 11-19. |
[15] | 张颖, 宋明根, 姬洪, 陈康, 张先明. 热定形工艺对高强型聚酯工业丝结构性能的影响[J]. 纺织学报, 2023, 44(09): 43-51. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 30
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 101
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Cited |
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Shared | ||||||||||||||||||||||||||||||||||||||||||||||||||
Discussed |
|