纺织学报 ›› 2024, Vol. 45 ›› Issue (11): 29-36.doi: 10.13475/j.fzxb.20230901101

• 纤维材料 • 上一篇    下一篇

梯度结构纳米纤维膜的制备及其对啤酒除菌过滤性能

王子傲1,2, 黄朋1,2, 程盼1,2, 刘轲1,2(), 向阳3, 周丰1,2,3, 高飞3, 王栋1,2   

  1. 1.武汉纺织大学 纺织纤维及制品教育部重点实验室, 湖北 武汉 430200
    2.武汉纺织大学 纺织行业非织造过滤与分离材料重点实验室, 湖北 武汉 430200
    3.安海斯布希企业管理(上海)有限公司武汉分公司, 湖北 武汉 430051
  • 收稿日期:2023-09-06 修回日期:2024-08-12 出版日期:2024-11-15 发布日期:2024-12-30
  • 通讯作者: 刘轲(1984—),男,教授,博士。主要研究方向为纤维基过滤分离材料。E-mail:kliu@wtu.edu.cn
  • 作者简介:王子傲(1999—),男,硕士生。主要研究方向为外泌体分离用纳米纤维材料的结构设计及性能研究。
  • 基金资助:
    国家自然科学基金项目(U23A20585);国家自然科学基金项目(52273061);湖北省自然科学基金杰出青年项目(2023AFA086);湖北省技术创新专项重大项目(2021BEC014)

Preparation of gradient-structured nanofibrous membranes for sterilization and filtration properties required for beer production

WANG Ziao1,2, HUANG Peng1,2, CHENG Pan1,2, LIU Ke1,2(), XIANG Yang3, ZHOU Feng1,2,3, GAO Fei3, WANG Dong1,2   

  1. 1. Key Laboratory of Textile Fibers and Products, Ministry of Education, Wuhan Textile University, Wuhan, Hubei 430200, China
    2. Key Laboratory of Nonwoven Filtration and Separation Materias for Textile lndustry, Wuhan Textile University,Wuhan, Hubei 430200, China
    3. Wuhan Branch, Anheisi Bush Enterprise Management (Shanghai) Co., Ltd., Wuhan, Hubei 430051, China
  • Received:2023-09-06 Revised:2024-08-12 Published:2024-11-15 Online:2024-12-30

摘要:

啤酒在酿造过程中易被微生物污染,会显著降低啤酒的风味品质,影响其外观体验。针对该问题,以醋酸丁酸纤维素(CAB)和聚乙烯醇-乙烯共聚物(EVOH)为原料,采用熔融共混相分离纺丝方法制备出EVOH纳米纤维,通过纳米纤维浆料化和悬浮液逐层喷涂的方法在非织造布表面制备纳米纤维梯度涂层,再采用戊二醛(GA)水溶液对其进行浸渍和交联改性,得到具有梯度结构的纳米纤维除菌膜。形貌、孔径分布及纯水通量等结构性能分析结果表明:在平均直径为450 nm的纤维层表面涂覆面密度为6 g/m2、平均直径为750 nm的纤维层所得的梯度结构纳米纤维除菌膜具有最优的综合性能,可100%拦截107CFU/cm2的沙雷氏菌;过滤啤酒原液后,浊度下降95%,稳定通量约为750 L/(h·m2);抗蛋白污染实验中,纯水通量能够恢复到初始通量的80%。这主要得益于该纳米纤维梯度除菌膜的致密小孔结构及结构稳定性,为啤酒酿造用除菌膜材料的设计和制备提供了新的思路,为改善啤酒酿造质量提供了新的过滤手段。

关键词: 纳米纤维, 梯度结构过滤膜, 除菌过滤, 抗污性, 啤酒稳定性

Abstract:

Objective With the growing fierce competition in the beer market and the increasing demand for high beer quality, the breweries try to reduce the cost and improve the quality of beer via optimizing their manufacturing process and raw materials, among which the filtration of beer is one of the main important steps. However, the flux instability of beer often occurs in the membrane filtration process. Therefore, it is of practical significance to develop a membrane material which can reduce the turbidity of beer while ensuring high throughput.

Method In this research, polyvinyl alcohol-ethylene copolymer (PVA-co-PE) nanofibers were prepared by melt blending phase separation method. Nanofibrous membranes with gradient porous structure were further fabricated by coating nanofibers with different diameters in different coverage density sequentially, crosslinked by glutaraldehyde (GA). The gradient bactericidal membrane was characterized by scanning electron microscopy, aperture distribution and flux analyzer. The filtration performances including permeability, turbidity and bacteria removal ability, antifouling and flux stability of the as-prepared membranes were investigated compared with that of Pall® commercial nylon microporous membrane.

Results The experimental results showed that the morphology of sterilized membranes were similar to that of the nascent one without GA crosslinking modification, indicating an effective strategy for the preparation of high-performance sterile membrane. After modification and high temperature sterilization, the average pore size of the membranes were slightly reduced because of the increased the fiber diameter and partial filling of the pores associated with GA crosslinking. The decreased pore size of crosslinked membrane should be beneficial to the sterilizing filtration application. During the long-term water flow test, GSM-3 with additional 6 g/m2 and 750 nm nanofiber layer always showed the highest pure water flux within 60 min even after it became stable. The cyclic filtration flux chart of membrane materials towards BSA solution was presented, and GSM-3, in comparison to other sterilization membranes, exhibited a remarkably high flux recovery rate, reaching 80% of its initial flux. Furthermore, sterile filtration performance tests revealed that all sterilization membranes effectively block the passage of Serratia bacteria which completely covered the membrane surface, obstructing the membrane channels and significantly reducing filtration efficiency. However, when filtering bacterial suspensions using the gradient sterilization membrane GSM-3, filtration proceeded smoothly with lower resistance and higher efficiency. Additionally, GSM-3 gradient sterilization membrane maintained a stable flux of approximately 750 L/(h·m2), with a 95% reduction in turbidity of the filtrate. These results indicate that the GSM-3 with a three-layer gradient structure possesses the most excellent filtration performance.The outer 750 nm fiber layer presented a loose structure primarily responsible for trapping larger particles and preventing them from clogging the inner pores, while the inner 450 nm fiber layer featuring dense pores increased the effective surface area of the membrane, resulting in improved membrane permeability and better control of membrane fouling.

Conclusion In this study, GA in situ cross-linked EVOH nanofibers was used to improve the sterile filtration properties of beer, where a nanofibrous membrane with fine nanofibers (average diameter of 450 nm) as the substrate membrane, and it was further coated with a coarse nanofiber layer (average diameter of 750 nm) on its surface. It was found that the nanofibrous membrane presented transmembrane gradient pore structure, which is beneficial to the improvement of water permeability with a high interception of particular contaminants especially bacterial in beer brewing. The superiority of the structure is attributed to the combination of inner fiber layer consisted of nanofibers with diameter of 450 nm and skin fiber layer made up of nanofibers with diameter of 750 nm fibers. The skin fiber layer has a loose structure, which not only intercepts larger particles to prevent them from clogging the smaller pores inside, but also provides the channels for interflow. The inner fiber layer provides a dense pore structure, the smaller pore size provides a prerequisite for intercepting bacteria, ensuring the bacterium removal performance of the membrane. They jointly contribute to the stepwise interception.

Key words: nanofiber, gradient porous membrane, sterile filtration, antifouling performance, beer stability

中图分类号: 

  • TS174

图1

经改性前后纳米纤维膜的形貌对比照片"

图2

EVOH纳米纤维间的交联改性机制"

图3

纳米纤维除菌膜的平均孔径与面密度的关系"

图4

GA改性对覆膜牢度的影响"

图5

纳米纤维膜的过滤性能对比"

图6

膜材对BSA溶液的循环过滤通量图"

表1

膜材对BSA的吸附率对比"

样品名称 吸附率/%
GSM-450 0.490
GSM-1 0.270
GSM-2 0.173
GSM-3 0.096
GSM-4 0.360

图7

纳米纤维膜的除菌性能对比图"

图8

纳米纤维除菌膜过滤啤酒综合性能"

[1] 张贵虎, 杨世琪, 李贺贺, 等. 膜过滤技术在提升饮料酒酒体稳定性的应用现状与展望[J]. 中国酿造, 2022, 41(8):1-5.
doi: 10.11882/j.issn.0254-5071.2022.08.001
ZHANG Guihu, YANG Shiqi, LI Hehe, et al. Application status and prospect of membrane filtration technology in improving the stability of beverage wine body[J]. Chinese Brewing, 2022, 41(8):1-5.
[2] 邓仕彬, 蔡伊萍, 林坍霖, 等. 果酿啤酒的酿造工艺和品质研究进展[J]. 中国酿造, 2023, 42(2):16-21.
doi: 10.11882/j.issn.0254-5071.2023.02.003
DENG Shibin, CAI Yiping, LIN Tanlin, et al. Research progress on brewing technology and quality of fruit-brewed beer[J]. Chinese Brewing, 2023, 42(2):16-21.
[3] WANG W, LIU Y, SUN Z, et al. Hop resistance and beer-spoilage features of foodborne Bacillus cereus newly isolated from filtration-sterilized draft beer[J]. Annals of Microbiology, 2017, 67: 17-23.
[4] 赵娟娟, 王艳凤, 张志强, 等. 啤酒风味物质研究进展[J]. 食品安全质量检测学报, 2023, 14(8):44-51.
ZHAO Juanjuan, WANG Yanfeng, ZHANG Zhiqiang, et al. Research progress of flavor substances in beer[J], Journal of Food Safety and Quality Inspection, 2023, 14(8):44-51.
[5] GASSARA F, ANTZAK C, AJILA C M, et al. Chitin and chitosan as natural flocculants for beer clarifica-tion[J]. Journal of Food Engineering, 2015, 166: 80-85.
[6] SALURI M, ROBAL M, TUVIKENE R. Hybrid carrageenans as beer wort fining agents[J]. Food Hydrocolloids, 2019, 86: 26-33.
doi: 10.1016/j.foodhyd.2017.12.020
[7] 程斐, 单之初, 俞红波, 等. 硅藻土中金属元素含量对黄酒浑浊影响的研究[J]. 酿酒科技, 2023(5):97-100.
CHEN Fei, SHAN Zhichu, YU Hongbo, et al. Study on the influence of metal content in diatomite on turbidity of rice wine[J]. Brewing Technology, 2023(5):97-100.
[8] 朱一民, 沈岩柏, 魏德洲, 等. 硅藻土对水相中啤酒酵母菌的吸附研究[J]. 东北大学学报(自然科学版), 2005, 26(1):84-87.
ZHU Yimin, SHENG Yanbai, WEI Dezhou, et al. Study on the adsorption of diatomaceous earth to Saccharomyces cerevisiae in aqueous phase[J]. Journal of Northeastern University (Natural Science Edition), 2005, 26(1):84-87.
[9] 董伦, 陆茵. 聚偏氟乙烯微滤膜过滤纯生啤酒性能与滤菌效果研究[J]. 食品工业科技, 2014, 35(19): 168-171.
DONG Lun, LU Yin. Study on performance and bacterial filtration effect of polyvinylidene fluoride microfiltration membrane on pure draft beer[J]. Food Industry Science and Technology, 2014, 35(19): 168-171.
[10] CIMINI A, MORESI M. Combined enzymatic and crossflow microfiltration process to assure the colloidal stability of beer[J]. Lwt: Food Science and Technology, 2018, 90: 132-137.
[11] 徐锡言. 中空纤维膜与陶瓷平板膜在印染废水深度处理中的应用对比[J]. 技术与市场, 2022, 29(11):55-58.
XU Xiyan. Comparison of hollow fiber membrane and ceramic plate membrane in advanced treatment of printing and dyeing wastewater[J]. Technology and Market, 2022, 29(11):55-58.
[12] 聂心童, 孙超, 何亚其, 等. 超滤膜技术在废水处理领域中的应用研究进展[J]. 当代化工研究, 2023(12):5-7.
NIE Xintong, SUN Chao, HE Yaqi, et al. Research progress in the application of ultrafiltration membrane technology in wastewater treatment[J]. Contemporary Chemical Research, 2023(12):5-7.
[13] 王士超, 雷良波, 胡鹏刚, 等. 酱香型白酒降度除浊关键工艺研究[J]. 中国酿造, 2017, 36(8):41-44.
doi: 10.11882/j.issn.0254-5071.2017.08.009
WANG Shichao, LEI Liangbo, HU Penggang, et al. Study on key technology of reducing alcohol and removing turbidity in Maotai-flavor liquor[J]. Chinese Brewing, 2017, 36(8):41-44.
[14] CIMINI A, MORESI M. Innovative rough beer conditioning process free from diatomaceous earth and polyvinylpolypyrrolidone[J]. Foods, 2020, 9(9): 1228.
[15] 付博, 段杉, 齐明, 等. 复合酶澄清剂在啤酒酿造中的应用研究[J]. 中国酿造, 2018, 37(6):174-178.
doi: 10.11882/j.issn.0254-5071.2018.06.034
FU Bo, DUAN Shan, QI Ming, et al. Study on the application of complex enzyme clarifying agent in beer brewing[J]. Chinese Brewing, 2018, 37(6):174-178.
[16] YIN H, DENG Y, HE Y, et al. A preliminary study of the quality attributes of a cloudy wheat beer treated by flash pasteurization[J]. Journal of the Institute of Brewing, 2017, 123(3): 366-372.
[17] CIMINI A, MORESI M. Beer clarification by novel ceramic hollow-fiber membranes: effect of pore size on product quality[J]. Journal of Food Science, 2016, 81(10): 2521-2528.
doi: 10.1111/1750-3841.13436 pmid: 27649476
[1] 雷福旺, 冯其, 侯奥菡, 赵振鸿, 谭佳兆, 赵景, 王先锋. 聚偏氟乙烯-聚丙烯腈/SiO2单向导湿纤维膜的制备及其性能[J]. 纺织学报, 2024, 45(12): 1-8.
[2] 刘霞, 吴改红, 闫子豪, 王彩柳. 智能相变调温聚乳酸纤维膜的制备及其性能[J]. 纺织学报, 2024, 45(12): 18-24.
[3] 卢海龙, 于影, 左雨欣, 王浩然, 陈洪立, 汝欣. 取向增强抗CO2腐蚀纤维薄膜的制备及其性能[J]. 纺织学报, 2024, 45(12): 33-40.
[4] 刘允璞, 刘威, 王黎明, 覃小红. 静电纺三维纳米纤维材料的制备方法与应用进展[J]. 纺织学报, 2024, 45(11): 226-234.
[5] 王宇航, 谭晶, 李好义, 徐锦龙, 杨卫民. 纳米纤维纱线静电纺制备技术研究进展[J]. 纺织学报, 2024, 45(11): 235-243.
[6] 张应秀, 徐丽慧, 潘虹, 姚程健, 赵红, 窦梅冉, 沈勇, 赵诗怡. 基于甘蔗渣多孔碳的超疏水棉织物制备及其性能[J]. 纺织学报, 2024, 45(10): 161-169.
[7] 张佃平, 王昊, 林文峰, 王振秋. 多喷头纺丝装置的仿真与设计[J]. 纺织学报, 2024, 45(10): 200-207.
[8] 房磊, 刘秀明, 贾娇娇, 蔺志浩, 任燕飞, 侯凯文, 巩继贤, 扈延龄. 高分子量壳聚糖皮芯结构微纳米纤维膜制备[J]. 纺织学报, 2024, 45(09): 1-9.
[9] 王勃翔, 徐航丹, 李佳, 林杰, 程德红, 路艳华. 柞蚕丝素纳米纤维温敏复合膜制备及其生物相容性[J]. 纺织学报, 2024, 45(09): 18-25.
[10] 蔺志浩, 房磊, 贾娇娇, 扈延龄, 房宽峻. 负载生长因子的微纳米纤维创面敷料的制备与应用研究进展[J]. 纺织学报, 2024, 45(09): 244-251.
[11] 王清鹏, 张海艳, 王雨婷, 张涛, 赵燕. 聚环氧乙烷/Al2O3被动辐射降温膜的制备及其性能[J]. 纺织学报, 2024, 45(09): 33-41.
[12] 杨硕, 赵朋举, 程春祖, 李晨暘, 程博闻. 非对称润湿性纤维复合膜的制备及其油水分离性能[J]. 纺织学报, 2024, 45(08): 10-17.
[13] 王永政, 黄林涛, 宋付权. 石油沥青/聚丙烯腈静电纺碳纳米纤维的制备工艺优化及其性能[J]. 纺织学报, 2024, 45(08): 107-115.
[14] 陈灿, 拖晓航, 王迎. 取向聚氨酯纳米纤维膜卷纱的制备及其力学性能[J]. 纺织学报, 2024, 45(08): 134-141.
[15] 何满堂, 郭俊泽, 王黎明, 覃小红. 纳米纤维包芯纱截面方向热湿耦合传递过程的模拟[J]. 纺织学报, 2024, 45(08): 142-149.
Viewed
Full text
22
HTML PDF
Just accepted Online first Issue Just accepted Online first Issue
0 0 3 0 0 19

  From Others local
  Times 4 18
  Rate 18% 82%

Abstract
76
Just accepted Online first Issue
0 0 75
  From Others local
  Times 46 30
  Rate 61% 39%

Cited

Web of Science  Crossref   ScienceDirect  Search for Citations in Google Scholar >>
 
This page requires you have already subscribed to WoS.
  Shared   
  Discussed   
No Suggested Reading articles found!