纺织学报 ›› 2024, Vol. 45 ›› Issue (10): 137-144.doi: 10.13475/j.fzxb.20230901501

• 染整工程 • 上一篇    下一篇

聚酯织物的直接氟修饰疏水改性及其作用机制

宇平1, 王海跃1, 汪毅1, 孙钦超2, 王彦3, 胡祖明3()   

  1. 1.江苏海洋大学 环境与化学工程学院, 江苏 连云港 222005
    2.山东华纶新材料有限公司, 山东 临沂 276600
    3.东华大学 纤维材料改性国家重点实验室, 上海 201620
  • 收稿日期:2023-09-07 修回日期:2024-01-12 出版日期:2024-10-15 发布日期:2024-10-22
  • 通讯作者: 胡祖明(1962—),男,研究员,博士。研究方向为高分子材料成形工艺及理论、复合材料。E-mail:hzm@dhu.edu.cn
  • 作者简介:宇平(1989—),男,讲师,博士。主要研究方向为高性能高分子材料及复合材料。
  • 基金资助:
    江苏省高校自然科学基金面上项目(22KJB430019);连云港市博士后科研资助项目(LYG20220010);江苏省高校大学生创新创业训练计划项目(202211641178T);江苏省高校大学生创新创业训练计划项目(202311641099Y);江苏省高校大学生创新创业训练计划项目(202311641176H)

Hydrophobic modification and mechanism of polyester fabrics with direct fluorine modification

YU Ping1, WANG Haiyue1, WANG Yi1, SUN Qinchao2, WANG Yan3, HU Zuming3()   

  1. 1. School of Environmental and Chemical Engineering, Jiangsu Ocean University, Lianyungang, Jiangsu 222005, China
    2. Shandong Hualun Advanced Materials Co., Ltd., Linyi, Shandong 276600, China
    3. State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Donghua University, Shanghai 201620, China
  • Received:2023-09-07 Revised:2024-01-12 Published:2024-10-15 Online:2024-10-22

摘要:

为解决传统聚酯纤维分子主链结构中极性酯基导致的疏水性差的问题,提出直接氟修饰策略,以碱性溶液为刻蚀试剂,三氯(1H,1H,2H,2H-十三氟正辛基)硅烷为氟化改性试剂,在温和条件下对聚酯织物表面进行了简单高效的疏水化改性处理。借助红外光谱仪、差示扫描量热仪、热失重分析仪、接触角测试仪、扫描电子显微镜-能谱仪等分别表征了氟改性前后聚酯化学结构、熔点、热稳定性、水接触角以及表面元素分布,同时探究了疏水改性机制。研究结果表明:氟化改性前后聚酯织物具有相似的化学结构和熔点,经过碱性溶液刻蚀的未氟化改性聚酯织物表层刻痕明显;氟化改性聚酯织物表层覆盖氟元素和硅元素,其疏水性大幅提升,水接触角高达(120±5)°,保持1 h后几乎没有变化,同时对有机溶剂仍具高吸附性能;疏水性主要作用机制是含氟功能基团的改性剂以化学键键接的方式接枝在水解后的聚酯织物表面,并产生低表面能效果;基于直接氟化改性方法制备的聚酯织物在海洋大规模油污处理方面具有较高应用潜力。

关键词: 聚酯织物, 氟化改性, 疏水织物, 油水分离, 海洋油污吸附

Abstract:

Objective Polyester (PET) fabrics attracted much research attention in textile fields for its high yield and excellent performance. At present, a variety of methods have been developed to modify polyester fibers with antibacterial, flame retardant, electrostatic, and hydrophobic properties. In addition, hydrophobic modification of polyester fiber plays an important part in applications of medical treatment, filtration, separation, and sanitation. However, PET fabrics with many ester linkages are easily hydrophilic, and can be easily polluted, which seriously limits its applications in ocean envrionment. In order to solve the problem of poor hydrophobicity caused by polar ester groups in the main chain structure of polyester fiber, a fluorine modification strategy is proposed.

Method The simple and efficient hydrophobic modification of the surface of polyester fabrics was carried out by using alkaline solution as etching reagent and trichlorosilane (1H,1H,2H,2H-perfluorooctyl trichlorosilane) as fluoridation modification reagent. The chemical structure, melting point, thermal stability, contact angle, microstructure morphology, and element distribution on surface were characterized by infrared spectroscopy, differential scanning calorimeter, thermogravimetric analyzer, contact angle tester, and scanning electron microscopy-energy disperse spectroscopy, respectively. Moreover, the possible hydrophobic mechanism was analyzed, and the adsorption experiment of petroleum ether by polyester fabrics was also carried out.

Results The results showed that the polyester fabrics demonstrated similar chemical structure and melting point (around 250 ℃) before and after modification. The high thermal stability of polyester fiber before and after modification was beneficial for the adsorption of oil spill at high temperature. The fluorinated polyester fabrics were successfully modified by perfluorosilane, as evidenced by the increased presence of fluorine elements and silicon elements on the surface of the polyester fiber fabrics. In addition, due to the low surface energy of fluoro-silicon polymers, marine fouling organisms would be difficult to aggregate and would fall off the surface of fabrics easily. The maximum thermal decomposition temperature for all samples was found around 448 ℃ after thermogravimetic analysis. Water droplets were absorbed quickly prior to fluorine modification. The hydrophobicity of the fluorinated polyester fabrics was greatly improved, and the water contact angle was as high as (120±5)°. After 1 h of hydrophobicity treatment, the water contact angle was basically constant. Moreover, the hydrophobic mechanism of the fluorinated PET fabrics was revealed in detail. Firstly, perfluorosilane hydrolyzes in ethanol and a large amount of —OH is formed at the end. The polyester fabric after treated with alkaline solution exposes a large amount of —OH and —COOH. The hydrolyzed perfluorosilane works on the surface of the polyester fiber fabrics to form hydrogen bonds, and the small molecular water was removed under heating conditions. In this case, the modifiers containing fluoro-functional groups are chemically bonded onto the surface of polyester fiber fabrics to obtain fabrics with a low surface energy. The polyester fabrics possessed high adsorption capacity for organic solvents, and the adsorption capacity of polyester fabrics for petroleum ether was found to be 8 g/g within 1 min.

Conclusion The development of multifunctional PET fabrics with superhydrophobic properties is considered necessary and urgent. In response to this need, a simple and efficient hydrophobic modification method was conducted on polyester fabrics using an alkaline solution as an etching reagent and trichlorosilane (1H,1H,2H,2H-perfluorooctyl trichlorosilane) as a fluorinated modification reagent. This fluorination process resulted in a significant improvement in the hydrophobicity of PET fabrics, as evidenced by larger water contact angles. The research work conducted in this study provides insight into the mechanism of hydrophobic modification of polyester fabrics, which holds great significance for future studies in this field. In a word, the fluorosilane-coated PET fabrics exhibited several advantages, including a simple preparation process, low cost, and effective performance. Consequently, these fabrics have promising applications in large-scale production and utilization for multifunctional purposes such as antifouling and oil-water separation. Overall, the development of superhydrophobic PET fabrics through fluorosilane coating holds immense potential and offers various benefits for the textile industry.

Key words: polyester fabric, fluorination modification, hydrophobic fabric, oil-water separation, adsorption of marine oil pollution

中图分类号: 

  • TQ342

图1

疏水聚酯织物的改性工艺流程"

图2

氟化改性前后聚酯织物的红外光谱图"

图3

不同放大倍数下未改性聚酯织物和碱溶液处理后聚酯织物表层形貌"

图4

不同放大倍数下氟化改性聚酯织物表层形貌和表层元素含量分布"

图5

氟化改性前后聚酯织物的疏水效果"

图6

氟化改性前后聚酯织物表层的反应机制"

图7

氟化改性前后聚酯织物的有机溶剂接触角"

图8

氟化改性前后聚酯织物的热性能分析图"

图9

氟化改性后聚酯织物对石油醚的吸附实验"

[1] DONG Y, LIU Y, HU C, et al. Chronic oiling in global oceans[J]. Science, 2022, 376(6599): 1300-1304.
doi: 10.1126/science.abm5940 pmid: 35709269
[2] CHEN Z, SUN H, KONG W, et al. Closed-loop utilization of polyester in the textile industry[J]. Green Chemistry, 2023. DOI: 10.1039/D3GC00407D.
[3] 扬嘉欣, 宋莎莎, 张扬. 聚对苯二甲酸乙二醇酯织物及薄膜的疏水改性及其应用研究进展[J]. 中国科学: 化学, 2023, 53(9):1619-1635.
YANG Jiaxin, SONG Shasha, ZHANG Yang. Recent advances in polyethylene terephthalate fabric and film: insight into hydrophobic modification and application[J]. Scientia Sinica Chimica, 2023, 53(9):1619-1635.
[4] 张琳, 武海良, 沈艳琴, 等. 碱处理对异形界面聚酯纱线芯吸效应及强力的影响[J]. 纺织学报, 2019, 40(1): 73-78.
ZHANG Lin, WU Hailiang, SHEN Yanqin, et al. Influence of alkali treatment on wicking effect and strength of profiled polyester yarn[J]. Journal of Textile Research, 2019, 40(1): 73-78.
[5] 宇平, 孙钦超, 王彦, 等. 聚酯纤维改性研究及在海洋领域应用展望[J]. 合成纤维工业, 2023, 46(4): 52-56.
YU Ping, SUN Qinchao, WANG Yan, et al. Research on modification of polyester fibers and its application in ocean[J]. China Synthetic Fiber Industry, 2023, 46(4): 52-56.
[6] LIU Y, LI W, YUAN C, et al. Two-dimensional fluorinated covalent organic frameworks with tunable hydrophobicity for ultrafast oil-water separation[J]. Angewandte Chemie International Edition, 2021. DOI: 10.1002/anie.202113348.
[7] XIANG W, GONG S, ZHU J. Eco-friendly fluorine functionalized superhydrophobic/superoleophilic zeolitic imidazolate frameworks-based composite for continuous oil-water separation[J]. Molecules, 2023. DOI: 10.3390/molecules28062843.
[8] DHARA M, BANERJEE S. Fluorinated high performance polymers: poly (arylene ether)s and aromatic polyimides containing trifluoromethyl groups[J]. Progress in Polymer Science, 2010, 35(8): 1022-1077.
[9] PROROKOVA N, KUMEEVA T, VAVILOVA S. Improving the wettability of polyester fabric with using direct fluorination[J]. Journal of Fluorine Chemistry, 2019, 219: 115-122.
[10] 王洪杰, 赵娜, 潘显苗, 等. 超疏水聚酯纤维织物的制备及其油水分离性能研究[J]. 高分子通报, 2022, 278(6): 46-53.
WANG Hongjie, ZHAO Na, PAN Xianmiao, et al. Preparation of superhydrophobic polyester fabric and its oil-water separation property[J]. Polymer Bulletin, 2022, 278(6): 46-53.
[11] YANG Y, GUO Z, LI Y, et al. Electrospun rough PVDF nanofibrous membranes via introducing fluorinated SiO2 for efficient oil-water emulsions coalescence separation[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022. DOI: 10.1016/j.colsurfa.2022.129646.
[12] KO Y, AZBELL T J, MILNER P, et al. Upcycling of dyed polyester fabrics into copper-1,4-benzenedicarboxylate (CuBDC) metal-organic frameworks[J]. Industrial & Engineering Chemistry Research, 2023, 62(14): 5771-5781.
[13] HONG W, YUAN L, YANG S. High temperature phenylethynyl-terminated imide oligomers derived from asymmetric diphenyl ether diamines for resin transfer molding[J]. Polymer, 2023. DOI: 10.1016/j.polymer.2022.125635.
[14] 冯俊凤, 徐清, 周成旭. 室温固化型有机氟硅防污涂膜的制备及性能研究[J]. 化工新型材料, 2016, 44(1): 67-69.
FENG Junfeng, XU Qing, ZHOU Chengxu. Preparation and property of organic fluorine-silicon antifouling coating by room temperature curing[J]. New Chemical Materials, 2016, 44(1): 67-69.
[15] MARTINELLI E, GUNES D, WENNING B, et al. Effects of surface-active block copolymers with oxyethylene and fluoroalkyl side chains on the antifouling performance of silicone-based films[J]. Biofouling, 2016, 32(1): 81-93.
doi: 10.1080/08927014.2015.1131822 pmid: 26769148
[16] XIE C, GUO H, ZHAO W, et al. Environmentally friendly marine antifouling coating based on a synergistic strategy[J]. Langmuir, 2020, 36(9): 2396-2402.
doi: 10.1021/acs.langmuir.9b03764 pmid: 32036655
[17] 崔崑, 赵巧玲, 黄晋, 等. 含氟-硅聚合物海洋防污涂层材料设计研究新进展[J]. 涂料工业, 2023, 53(2): 79-88.
CUI Kun, ZHAO Qiaoling, HUANG Jin, et al. Latest progress in the design and research of fluoro-silicon polymer based marine antifouling coating[J]. Paint & Coatings Industry, 2023, 53(2): 79-88.
[18] HE Q, WANG J, HAO X, et al. Construction of a durable superhydrophobic flame-retardant coating on the PET fabrics[J]. Materials & Design, 2023. DOI: 10.1016/j.matdes.2023.112258.
[19] PRAKASH C, PRASANTH R. Approaches to design a surface with tunable wettability: a review on surface properties[J]. Journal of Materials Science, 2021, 56: 108-135.
[20] FAN Q, LU T, DENG Y, et al. Bio-based materials with special wettability for oil-water separation[J]. Separation and Purification Technology, 2022. DOI: 10.1016/j.seppur.2022.121445.
[21] HOU K, JIN K, FAN Z, et al. Facile fabrication of fabric-based membrane for adjustable oil-in-water emulsion separation, suspension filtration and dye removal[J]. Separation and Purification Technology, 2023. DOI:10.1016/j.seppur.2023.124467.
[1] 杨硕, 赵朋举, 程春祖, 李晨暘, 程博闻. 非对称润湿性纤维复合膜的制备及其油水分离性能[J]. 纺织学报, 2024, 45(08): 10-17.
[2] 闫迪, 王雪芳, 谭文萍, 高国金, 明津法, 宁新. 富咪唑型多孔左旋聚乳酸纳米纤维膜制备及其双重净水性能[J]. 纺织学报, 2024, 45(08): 116-126.
[3] 王玉周, 周梦洁, 姜圆金, 陈家本, 李玥. 偕胺肟化聚丙烯腈纳米纤维膜的制备与油水乳液分离性能[J]. 纺织学报, 2023, 44(07): 42-49.
[4] 谢爱玲, 乐昱含, 艾馨, 王亚辉, 王义容, 陈新彭, 陈国强, 邢铁玲. 茶多酚改性超疏水涤纶织物制备及其在油水分离中的应用[J]. 纺织学报, 2022, 43(02): 162-170.
[5] 高强, 王晓, 郭亚杰, 陈茹, 魏菊. 棉基Ti3C2Tx油水分离膜的制备及其性能[J]. 纺织学报, 2022, 43(01): 172-177.
[6] 李维斌, 张程, 刘军. 超疏水棉织物制备及其在油水过滤分离中应用[J]. 纺织学报, 2021, 42(08): 109-114.
[7] 余钰骢, 史晓龙, 刘琳, 姚菊明. 用于油水分离的超润湿性纺织品研究进展[J]. 纺织学报, 2020, 41(11): 189-196.
[8] 郝志奋, 徐乃库, 封严, 段梦馨, 肖长发. 聚甲基丙烯酸酯/聚丙烯酸酯共混纤维膜制备及其油水分离性能[J]. 纺织学报, 2020, 41(06): 21-26.
[9] 张一敏, 周伟涛, 何建新, 杜姗, 陈香香, 崔世忠. 偕胺肟化SiO2/聚丙烯腈复合纤维膜的制备及其性能[J]. 纺织学报, 2020, 41(05): 25-29.
[10] 王邓峰, 王宗乾, 范祥雨, 宋波, 李禹. 天然中空异形萝藦种毛纤维的吸油性能[J]. 纺织学报, 2020, 41(04): 26-32.
[11] 王访鹤, 王锐, 魏丽菲, 王照颖, 张安莹, 王德义. 层层自组装阻燃改性聚酯织物的制备及其性能[J]. 纺织学报, 2019, 40(11): 106-112.
[12] 周存 李叶燃 马悦 王闻宇 金欣 肖长发. 二氧化钛负载聚酯织物的制备及其光催化性能[J]. 纺织学报, 2018, 39(11): 91-95.
[13] 周存 何雅僖. 超疏水导电聚酯织物的制备及其性能[J]. 纺织学报, 2018, 39(08): 88-94.
[14] 黄成 陈永邦 叶敬平 阎克路. 引发剂水相乳化工艺对卤胺类单体接枝聚酯抗菌性的影响[J]. 纺织学报, 2017, 38(06): 175-180.
[15] 袁晓雨 李伟 朱振国 张兴祥. 超疏水聚酯滤布的性能及其在油水分离中的应用[J]. 纺织学报, 2017, 38(03): 108-113.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!