纺织学报 ›› 2024, Vol. 45 ›› Issue (11): 235-243.doi: 10.13475/j.fzxb.20230902402

• 综合述评 • 上一篇    下一篇

纳米纤维纱线静电纺制备技术研究进展

王宇航1, 谭晶1, 李好义1, 徐锦龙2, 杨卫民1,3()   

  1. 1.北京化工大学 机电工程学院, 北京 100029
    2.江苏新视界先进功能纤维创新中心, 江苏 苏州 215228
    3.北京化工大学 有机无机复合材料国家重点实验室, 北京 100029
  • 收稿日期:2023-09-11 修回日期:2024-06-05 出版日期:2024-11-15 发布日期:2024-12-30
  • 通讯作者: 杨卫民(1965—),男,教授,博士。主要研究方向为高分子聚合物成形加工原理与技术产业化。E-mail:yangwm@mail.buct.edu.cn
  • 作者简介:王宇航(1998—),男,博士生。主要研究方向为聚合物熔体静电纺纳米纤维纱线成形机理与功能应用。
  • 基金资助:
    国家重点研发计划项目(2022YFB3804204)

Research progress in electrospinning technology for nanofiber yarns

WANG Yuhang1, TAN Jing1, LI Haoyi1, XU Jinlong2, YANG Weimin1,3()   

  1. 1. College of Mechanical and Electrical Engineering, Beijing University of Chemical Technology, Beijing 100029, China
    2. Jiangsu New Horizon Advanced Functional Fiber Innovation Center Co., Ltd., Suzhou, Jiangsu 215228, China
    3. State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
  • Received:2023-09-11 Revised:2024-06-05 Published:2024-11-15 Online:2024-12-30

摘要:

针对静电纺纳米纤维纱线制备技术的产率低、纱线力学性能较差以及生产过程有安全风险和环保隐患的技术现状,对静电纺纳米纤维纱线制备技术进行了综述。首先从纳米纤维聚集加捻原理出发,概述了手动加捻法、电场诱导成纱法、高速旋转加捻法、水浴成纱法和气流辅助成纱法的成纱机制、技术特点及研究现状,指出高速旋转加捻法以纱线制备连续稳定可控等优势成为静电纺纳米纤维纱线制备技术的主流;随后从纤维特性及纱线结构出发,探讨工艺、装置与材料对纱线力学性能的影响,研究认为静电纺纳米纤维纱线增强的本质在于提升纤维取向、纤维抱合紧密度与单纤维力学性能。最后介绍了静电纺纳米纤维纱线的产率现状及影响因素,指出熔体或绿色纺丝液体系的无针静电纺技术与成纱技术的结合是静电纺纳米纤维纱线高效制备的有效途径。

关键词: 静电纺丝, 纳米纤维纱线, 纱线制备技术, 力学性能, 纱线产率

Abstract:

Significance The development of high-performance yarn materials is a focal point of research in textile engineering and materials science. Electrospun nanofibers possess high specific surface area, porosity, unique interfacial properties, and rich physicochemical properties, and the aggregation of these fibers into yarns is an important approach to developing high-performance yarn materials. In addition, the yarns with anisotropic structural properties allow them to be made into 2-D or 3-D products using weaving or knitting technology. The versatile product structure and ease of functionalization make electrospun nanofiber yarns exhibit excellent properties in fields such as tissue engineering, moisture and heat management, energy sensing, and defense industry applications. However, current electrospinning techniques face challenges in low preparation efficiency and weak mechanical properties, which require further breakthroughs.

Progress In this paper, the forming methods of electrospun yarns from the principle of fiber aggregation and twisting are firstly reviewed, and the representative techniques are summarized. These yarn forming methods can be divided into manual twisting, electricity inducement, water bathing, high speed rotation and airflow coordination. At present, the fiber collector rotary twisting is the most commonly used method for electrospun yarn preparation, which has the advantages of good fiber orientation, yarn uniformity and stable yarn formation process. Subsequently, the influence factors affecting the yield of electrospun nanofiber yarns are discussed and summarized. The yarn yield is affected by the fiber yield, molding method, and material properties and other aspects. As the fiber yield increases, the yarn yield also increases significantly. The combination of four-nozzle needleless electrospun technology and yarn forming technology increases the yarn yield by 5 m/min, but it is still much smaller than that of the conventional spinning method. Finally, the effects of process, device and material on the mechanical properties of yarns were investigated from the perspective of yarn microstructure and fiber properties and are summarized. Moderate twist, high fiber orientation and high fiber crystallinity are all conducive to the yarn strength. At present, the polyacrylonitrile (PAN) electrospun yarns treated by hot drafting and bifunctional poly (ethylene glycol) bisazide (PEG-BA) modification are shown to have the most attractive mechanical properties. The yarn strength reached 1 236 MPa with the tenacity of 118 J/cm3, which initially reached the level of spider silk.

Conclusion and prospect The paper systematically reviews the preparation method, influencing factors influencing yield and strength of electrospun yarns. In order to address the issues of inadequate mechanical properties electrospun nanofiber film, electrospun nanofiber yarns have been prepared using various techniques such as manual twisting, electricity inducement, water bathing, high speed rotation and airflow coordination. The current technology for preparing electrospun nanofiber yarn is primarily based on a solution electrospinning system with single/double needles, resulting in low fiber yield and subsequently low yarn yield. Enhancing the yield of yarn can be achieved by combining needle-free electrospinning systems with spinning technologies, for which it is necessary to investigate the motion patterns of needle-free multi-jet electrospinning and orientation deposition twist methods. Simultaneously, developing an environmentally friendly spinning liquid system is crucial to mitigate risks posed by common organic solvents and achieve a sustainable preparation process. Melt electrospinning technology offers advantages such as complete conversion of raw materials into fibers, minimal jet whipping effects, and solvent-free preparation processes. Exploring novel approaches for enhancing the yield of melt electrospinning fiber thinning and controlling jet aggregation into yarn represents a pivotal avenue towards the sustainable production of electrospun nanofiber yarns. The reinforcement of electrostatically spun nanofiber yarns necessitates a harmonious integration of material system, device design, process control, and post-processing techniques to optimize yarn orientation and mechanical properties at the single fiber level. Investigating the spatial dynamics of electrospun fibers and evolving characteristics of the spinning jet during the fabrication process emerges as an indispensable means to enhance both yarn alignment and tensile strength. Furthermore, implementing post-treatments effectively enhances yarn structure and individual fiber strength, thereby significantly improving overall mechanical performance.

Key words: electrospinning, nanofiber yarn, yarn preparation technology, mechanical property, yarn yield

中图分类号: 

  • TS104.76

图1

静电纺纳米纤维纱线制备原理图"

表1

聚合静电纺纳米纤维纱线力学性能"

纱线制备方法 聚合物 力学性能 力学性能主要影响因素 参考文献
断裂
强度/MPa
断裂
伸长率/%
手动加捻 PVDF 44.6 121.9 纱状纳米纤维集合体 [12]
4.4 105.1 膜状纳米纤维集合体
气流辅助成纱 PAN 24 30 聚合物种类 [36-37]
PU 42 260
PVDF 31 75
电场诱导成纱 PAN/MWCNTs 10.8 38 MWCNTs占比0.25% [18]
11.5 45.5 MWCNTs占比0.5%
13.3 56.5 MWCNTs占比0.75%
14.6 60 MWCNTs占比1%
水浴成纱 PA6 35 34 捻度1 000捻/m [33]
41 36 捻度1 500捻/m
47 37 捻度2 000捻/m
52 39 捻度2 500捻/m
47 40 捻度3 000捻/m
旋转加捻法 金属圆盘 PAN 48.29 153 溶剂2,2,2-三氟乙醇 [41]
2.34 27 溶剂氯仿 [42]
9.30 47 溶剂二氯甲烷 [31]
金属漏斗 PVDF-HFP 23 160 钢制收集器 [23]
27 205 铝制收集器 [43]
金属圆盘 PAN 8.5 37.51 PAN质量分数10%
7.6 65.21 PAN质量分数12%
9.1 33.32 PAN质量分数14%
金属板 PAN 61.3 54.21 未处理
116.56 22.53 张力下热处理
金属漏斗 PAN/PEG-BA 1 236 —— 热牵伸、退火与改性
PAN 72 —— 未处理

表2

聚合物静电纺纳米纤维纱线产率"

纱线制备方法 聚合物 静电纺系统 纤维产率/(g·h-1) 纱线产率/(m·min-1) 参考文献
水浴成纱法 PAN 单针头 0.184 2 [35]
电场诱导成纱法 PAN 单针头 0.138 0.5 [15]
旋转
加捻成纱
金属圆盘 PAN 双针头 0.110 2 [31]
金属漏斗 PAN 双针头 0.230 0.175 [44]
PAN 四针头 0.772 0.4 [26]
PAN 八针头 1.050 2 [47]
PAN 四喷头(无针气泡纺) 8.240 5 [48]
金属圆环 PAN 圆盘无针与单针头 4 [28]
PAN 双针头 0.910 3.33 [29]
微米纤维
纱线制备
方法
涡流纺 500 [45]
环锭纺 25 [45]
熔融纺丝 PET 1 000~7 000 [46]
[1] KENRY, LIM C T. Nanofiber technology: current status and emerging developments[J]. Progress in Polymer Science, 2017, 70: 1-17.
[2] WEI L, QIN X. Nanofiber bundles and nanofiber yarn device and their mechanical properties: a review[J]. Textile Research Journal, 2016, 86(17): 1885-1898.
[3] CHINNAPPAN A, BASKAR C, BASKAR S, et al. An overview of electrospun nanofibers and their application in energy storage, sensors and wearable/flexible electronics[J]. Journal of Materials Chemistry C, 2017, 5(48): 12657-12673.
[4] NAYAK R, PADHYE R, ARNOLD L. Melt-electrospinning of nanofibers[M]. Cambridge Woodhead Publishing, 2017: 11-40.
[5] 杨宇晨, 覃小红, 俞建勇. 静电纺纳米纤维功能性纱线的研究进展[J]. 纺织学报, 2021, 42(1): 1-9.
YANG Yuchen, QIN Xiaohong, YU Jianyong. Research progress of transforming electrospun nanofibers into functional yarns[J]. Journal of Textile Research, 2021, 42(1): 1-9.
[6] 胡慧娜, 裴鹏英, 胡雨, 等. 三维机织物的分类、性能及织造[J]. 纺织导报, 2017(12): 26-30.
HU Huina, PEI Pengying, HU Yu, et al. Three-dimensional woven fabric: classification, properties and production[J]. China Textile Leader, 2017(12): 26-30.
[7] 刘宇健, 谭晶, 陈明军, 等. 静电纺纳米纤维纱线研究进展[J]. 纺织学报, 2020, 41(2): 165-171.
LIU Yujian, TAN Jing, CHEN Mingjun, et al. Research progress of electrospun nanofiber yarns[J]. Journal of Textile Research, 2020, 41(2): 165-171.
[8] CAI J, XIE X, LI D, et al. A novel knitted scaffold made of microfiber/nanofiber core-sheath yarns for tendon tissue engineering[J]. Biomaterials Science, 2020, 8(16): 4413-4425.
doi: 10.1039/d0bm00816h pmid: 32648862
[9] PADMAKUMAR S, JOSEPH J, NEPPALLI M H, et al. Electrospun polymeric core-sheath yarns as drug eluting surgical sutures[J]. ACS Applied Materials & Interfaces, 2016, 8(11): 6925-6934.
[10] MAO N, CHEN W, MENG J, et al. Enhanced electrochemical properties of hierarchically sheath-core aligned carbon nanofibers coated carbon fiber yarn electrode-based supercapacitor via polyaniline nanowire array modification[J]. Journal of Power Sources, 2018, 399: 406-413.
[11] MAO N, PENG H, QIN X, et al. Contact force within electrospun nanofiber core-spun yarns and moisture management ability of their fabrics[J]. Journal of the Textile Institute, 2021: 113(2), 234-246.
[12] NAKASHIMA R, WATANABE K, LEE Y, et al. Mechanical properties of poly(vinylidene fluoride) nanofiber filaments prepared by electrospinning and twisting[J]. Advances in Polymer Technology, 2011, 32(S1): E44-E52.
[13] CHAWLA S, NARAGHI M, DAVOUDI A. Effect of twist and porosity on the electrical conductivity of carbon nanofiber yarns[J]. Nanotechnology, 2013. DOI: 10.1088/0957-4484/24/25/255708.
[14] WANG X, ZHANG K, ZHU M, et al. Continuous polymer nanofiber yarns prepared by self-bundling electrospinning method[J]. Polymer, 2008, 49(11): 2755-2761.
[15] WANG X, ZHANG K, ZHU M, et al. Enhanced mechanical performance of self-bundled electrospun fiber yarns via post-treatments[J]. Macromolecular Rapid Communications, 2008, 29(10): 826-831.
[16] YAN H, LIU L, ZHANG Z. Continually fabricating staple yarns with aligned electrospun polyacrylonitrile nanofibers[J]. Materials Letters, 2011, 65(15/16): 2419-2421.
[17] DALTON P D, KLEE D, MÖLLER M. Electrospinning with dual collection rings[J]. Polymer, 2005, 46(3): 611-614.
[18] AKBARI A, JAZANI O M, SAEB M R, et al. Towards well-aligned electrospun pan/mwcnts composite nanofibers: design, fabrication, and development[J]. Fibers and Polymers, 2014, 15(6): 1230-1235.
[19] TEO W E, RAMAKRISHNA S. Electrospun fibre bundle made of aligned nanofibres over two fixed points[J]. Nanotechnology, 2005, 16(9): 1878-1884.
[20] CHANG G, LI A, XU X, et al. Twisted polymer microfiber/nanofiber yarns prepared via direct fabrication[J]. Industrial & Engineering Chemistry Research, 2016, 55(25): 7048-7051.
[21] DABIRIAN F, HOSSEINI Y, RAVANDI S A H. Manipulation of the electric field of electrospinning system to produce polyacrylonitrile nanofiber yarn[J]. Journal of The Textile Institute, 2007, 98(3): 237-241.
[22] HAJIANI F, JEDDI A A A, GHAREHAGHAJI A A. An investigation on the effects of twist on geometry of the electrospinning triangle and polyamide 66 nanofiber yarn strength[J]. Fibers and Polymers, 2012, 13(2): 244-252.
[23] DABIRIAN F, RAVANDI S A H, SANATGAR R H, et al. Manufacturing of twisted continuous pan nanofiber yarn by electrospinning process[J]. Fibers and Polymers, 2011, 12(5): 610-615.
[24] ALI U, ZHOU Y, WANG X, et al. Direct electrospinning of highly twisted, continuous nanofiber yarns[J]. Journal of The Textile Institute, 2012, 103(1): 80-88.
[25] XIE Z, NIU H, LIN T. Continuous polyacrylonitrile nanofiber yarns: preparation and dry-drawing treatment for carbon nanofiber production[J]. RSC Advances, 2015, 5(20): 15147-15153.
[26] HE J, QI K, ZHOU Y, et al. Multiple conjugate electrospinning method for the preparation of continuous polyacrylonitrile nanofiber yarn[J]. Journal of Applied Polymer Science, 2013, 131(8): 40137.
[27] JIN S, XIN B, ZHENG Y. Preparation and characterization of polysulfone amide nanoyarns by the dynamic rotating electrospinning method[J]. Textile Research Journal, 2017, 89(1): 52-62.
[28] SHUAKAT M N, LIN T. Direct electrospinning of nanofibre yarns using a rotating ring collector[J]. Journal of The Textile Institute, 2015, 107(6): 791-799.
[29] SHUAKAT M N, LIN T. Highly-twisted, continuous nanofibre yarns prepared by a hybrid needle-needleless electrospinning technique[J]. RSC Advances, 2015, 5(43): 33930-33937.
[30] WU S, ZHANG Y, LIU P, et al. Polyacrylonitrile nanofiber yarns and fabrics produced using a novel electrospinning method combined with traditional textile techniques[J]. Textile Research Journal, 2016, 86(16): 1716-1727.
[31] WU S H, QIN X H. Uniaxially aligned polyacrylonitrile nanofiber yarns prepared by a novel modified electrospinning method[J]. Materials Letters, 2013, 106: 204-207.
[32] SMIT E, BÜTTNER U, SANDERSON R D. Continuous yarns from electrospun fibers[J]. Polymer, 2005, 46(8): 2419-2423.
[33] TIAN L, YAN T, PAN Z. Fabrication of continuous electrospun nanofiber yarns with direct 3D processability by plying and twisting[J]. Journal of Materials Science, 2015, 50(21): 7137-7148.
[34] TEO W E, GOPAL R, Ramaseshan R, et al. A dynamic liquid support system for continuous electrospun yarn fabrication[J]. Polymer, 2007, 48(12): 3400-3405.
[35] YOUSEFZADEH M, LATIFI M, TEO W E, et al. Producing continuous twisted yarn from well-aligned nanofibers by water vortex[J]. Polymer Engineering & Science, 2010, 51(2): 323-329.
[36] ZHOU Y, WANG H, HE J, et al. Novel method for preparation of continuously twisted nanofiber yarn based on a combination of stepped airflow electrospinning and friction twisting[J]. Journal of Materials Science, 2018, 53(22): 15735-15745.
[37] ZHOU Y, WANG H, HE J, et al. Highly stretchable nanofiber-coated hybrid yarn with wavy structure fabricated by novel airflow-electrospinning method[J]. Materials Letters, 2019, 239: 1-4.
[38] MA X, ZHANG L, TAN J, et al. Continuous manufacturing of nanofiber yarn with the assistance of suction wind and rotating collection via needleless melt electrospinning[J]. Journal of Applied Polymer Science, 2017, 134(20): 1-9.
[39] MALEKI H, GHAREHAGHAJI A A, DIJKSTRA P J. Electrospinning of continuous poly (L-lactide) yarns: effect of twist on the morphology, thermal properties and mechanical behavior[J]. Journal of the Mechanical Behavior of Biomedical Materials, 2017, 71: 231-237.
doi: S1751-6161(17)30149-2 pmid: 28365539
[40] 罗彩鸿. 喷气涡流纺涤纶粗特纱成纱质量的工艺改进研究[D]. 无锡: 江南大学, 2022:31-32.
LUO Caihong. Study on the process improvement of air-jet vortex spinning polyester low-count yarn quality[D]. Wuxi: Jiangnan University, 2022:31-32.
[41] MALEKI H, GHAREHAGHAJI A A, MORONI L, et al. Influence of the solvent type on the morphology and mechanical properties of electrospun PLLA yarns[J]. Biofabrication, 2013, 5(3): 35014.
doi: 10.1088/1758-5082/5/3/035014 pmid: 23945472
[42] GÖKTEPE F, BUZOL MÜLAYIM B, GÖKTEPE Ö, et al. The effect of collector parameters on nanofiber yarns produced by electro yarn spinning machine with conical collector[J]. Journal of The Textile Institute, 2021, 113(9): 1785-1798.
[43] BUZOL MÜLAYIM B, GÖKTEPE F. Analysis of polyacrylonitrile nanofiber yarn formation in electrospinning by using a conical collector and two oppositely charged nozzles[J]. Journal of The Textile Institute, 2020. DOI: 10.1080/00405000.2020.1768772.
[44] LIAO X, DULLE M, DE Souza e, SILVA J M, et al. High strength in combination with high toughness in robust and sustainable polymeric materials[J]. Science, 2019, 366(6471): 1376-1379.
doi: 10.1126/science.aay9033 pmid: 31831668
[45] 景慎全. 我国喷气涡流纺发展现状及建议[J]. 棉纺织技术, 2023, 51(3): 53-57.
JING Shenquan. Air-jet vortex spinning development status and suggestion in China[J] Cotton textile Technology, 2023, 51(3): 53-57.
[46] 侯曦. 熔融纺丝高速卷绕机复杂转子系统动力学研究[D]. 上海: 东华大学, 2014:7-9.
HOU Xi. Dynamic research on the complex rotor system of melt spinning high-speed winding machine[D]. Shanghai: Donghua University, 2014:7-9.
[47] HE J, ZHOU Y, QI K, et al. Continuous twisted nanofiber yarns fabricated by double conjugate electrospinning[J]. Fibers and Polymers, 2013, 14(11): 1857-1863.
[48] HE J, QI K, WANG L, et al. Combined application of multinozzle air-jet electrospinning and airflow twisting for the efficient preparation of continuous twisted nanofiber yarn[J]. Fibers and Polymers, 2015, 16(6): 1319-1326.
[1] 雷福旺, 冯其, 侯奥菡, 赵振鸿, 谭佳兆, 赵景, 王先锋. 聚偏氟乙烯-聚丙烯腈/SiO2单向导湿纤维膜的制备及其性能[J]. 纺织学报, 2024, 45(12): 1-8.
[2] 刘霞, 吴改红, 闫子豪, 王彩柳. 智能相变调温聚乳酸纤维膜的制备及其性能[J]. 纺织学报, 2024, 45(12): 18-24.
[3] 王雅文, 刘娜, 王元非, 吴桐. 静电纺纳米纤维纱线及其对细胞迁移和血管化的调控[J]. 纺织学报, 2024, 45(12): 25-32.
[4] 卢海龙, 于影, 左雨欣, 王浩然, 陈洪立, 汝欣. 取向增强抗CO2腐蚀纤维薄膜的制备及其性能[J]. 纺织学报, 2024, 45(12): 33-40.
[5] 杨鑫, 张昕, 潘志娟. 丝素纳米原纤增强再生丝素蛋白/聚乙烯醇纤维的结构与性能[J]. 纺织学报, 2024, 45(11): 1-9.
[6] 李韩, 王海霞, 张旭, 刘丽萍, 刘小琨. 基于聚乙烯醇缩丁醛/聚乙二醇的同轴纳米纤维膜储热织物制备及其热管理性能[J]. 纺织学报, 2024, 45(11): 37-45.
[7] 刘允璞, 刘威, 王黎明, 覃小红. 静电纺三维纳米纤维材料的制备方法与应用进展[J]. 纺织学报, 2024, 45(11): 226-234.
[8] 缪璐璐, 孟小奕, 董正梅, 彭倩, 何林伟, 邹专勇. 热处理工艺对喷气涡流纺低熔点涤纶长丝包芯纱力学性能的影响[J]. 纺织学报, 2024, 45(11): 73-79.
[9] 刘健, 王程皓, 董守骏, 刘泳汝. 半封闭自由表面式静电纺丝喷头设计与优化[J]. 纺织学报, 2024, 45(11): 215-225.
[10] 刘健, 董守骏, 王程皓, 刘泳汝, 潘山山, 尹兆松. 花瓣状多尖端静电纺丝喷头的电场模拟及优化[J]. 纺织学报, 2024, 45(10): 191-199.
[11] 张佃平, 王昊, 林文峰, 王振秋. 多喷头纺丝装置的仿真与设计[J]. 纺织学报, 2024, 45(10): 200-207.
[12] 李蒙, 戴梦男, 俞杨销, 王建南. 丝素蛋白基骨修复材料的应用研究进展[J]. 纺织学报, 2024, 45(10): 224-231.
[13] 刘婷, 闫涛, 潘志娟. 香蕉茎秆纤维/抗菌纤维混纺纱的制备及其性能[J]. 纺织学报, 2024, 45(10): 48-54.
[14] 王浩然, 于影, 左雨欣, 顾志清, 卢海龙, 陈洪立, 柯俊. 聚乙烯亚胺/聚丙烯腈复合纤维薄膜的制备及其功能化应用[J]. 纺织学报, 2024, 45(09): 26-32.
[15] 王清鹏, 张海艳, 王雨婷, 张涛, 赵燕. 聚环氧乙烷/Al2O3被动辐射降温膜的制备及其性能[J]. 纺织学报, 2024, 45(09): 33-41.
Viewed
Full text
23
HTML PDF
Just accepted Online first Issue Just accepted Online first Issue
0 0 5 0 0 18

  From Others local
  Times 8 15
  Rate 35% 65%

Abstract
132
Just accepted Online first Issue
0 0 132
  From Others local
  Times 114 18
  Rate 86% 14%

Cited

Web of Science  Crossref   ScienceDirect  Search for Citations in Google Scholar >>
 
This page requires you have already subscribed to WoS.
  Shared   
  Discussed   
No Suggested Reading articles found!