纺织学报 ›› 2024, Vol. 45 ›› Issue (11): 73-79.doi: 10.13475/j.fzxb.20230903201

• 纺织工程 • 上一篇    下一篇

热处理工艺对喷气涡流纺低熔点涤纶长丝包芯纱力学性能的影响

缪璐璐1,2, 孟小奕2, 董正梅2,3, 彭倩2, 何林伟3,4, 邹专勇1,2()   

  1. 1.绍兴文理学院 浙江省清洁染整技术研究重点实验室, 浙江 绍兴 312000
    2.绍兴文理学院 绍兴市高性能纤维及制品重点实验室, 浙江 绍兴 312000
    3.绍兴国周纺织新材料有限公司, 浙江 绍兴 312000
    4.绍兴国周纺织整理有限公司, 浙江 绍兴 312030
  • 收稿日期:2023-09-14 修回日期:2024-05-21 出版日期:2024-11-15 发布日期:2024-12-30
  • 通讯作者: 邹专勇(1983—),男,教授。主要研究方向为新型纱线加工理论与应用研究。E-mail:zouzhy@usx.edu.cn
  • 作者简介:缪璐璐(1998—),女,硕士生。主要研究方向为纺织材料与纺织品设计。
  • 基金资助:
    国家自然科学基金项目(51573095);国家级大学生创新创业训练计划项目(201910349028)

Effect of heat treatment on mechanical property of core-spun yarn from low melting point polyester filament made by air-jet vortex spinning

MIAO Lulu1,2, MENG Xiaoyi2, DONG Zhengmei2,3, PENG Qian2, HE Linwei3,4, ZOU Zhuanyong1,2()   

  1. 1. Key Laboratory of Clean Dyeing and Finishing Technology of Zhejiang Province, Shaoxing University, Shaoxing, Zhejiang 312000, China
    2. Shaoxing Key Laboratory of High Performance Fibers & Products, Shaoxing University, Shaoxing, Zhejiang 312000, China
    3. Shaoxing Guozhou Textile New Material Co., Ltd., Shaoxing, Zhejiang 312000, China
    4. Shaoxing Guozhou Textile Finishing Co., Ltd., Shaoxing, Zhejiang 312030, China
  • Received:2023-09-14 Revised:2024-05-21 Published:2024-11-15 Online:2024-12-30

摘要:

为进一步提升喷气涡流纺包芯纱的力学性能,发挥低熔点长丝的热熔型黏合特性,制备低熔点涤纶长丝喷气涡流纺包芯纱,基于Box-Behnken Design响应面法,探究非接触式热处理过程中牵伸倍数、热处理速度和热处理温度3个因素对包芯纱断裂强度、断裂伸长率和断裂功的影响规律,并进行热处理工艺优化。研究结果表明:热处理温度和牵伸倍数减小、热处理速度增大,有利于包芯纱的断裂强度、断裂伸长率、断裂功的增大。通过响应优化,得到低熔点涤纶长丝喷气涡流纺包芯纱的最佳热处理工艺:热处理温度为130 ℃;速度为9 000 mm/min;牵伸倍数为1.00。经过最优热处理工艺加工后包芯纱断裂强力提高7.64%,断裂伸长率提高9.34%,断裂功提高13.78%。

关键词: 喷气涡流纺包芯纱, 低熔点长丝, 热处理工艺, 纱线力学性能, 纺纱工艺

Abstract:

Objective Low melting point polyester fiber can be used as a hot-melt adhesive material. The strength of air-jet vortex spinning core-spun yarn is closely related to the mechanical properties of core-filament. We replace the core-filament of the air-jet vortex spinning core-spun yarn with a low melting point filament. By studying the appropriate heat treatment process, it can not only help the core-filament to maintain a certain mechanical properties, but also use the effect of thermal bonding enhancement of low melting point fibers to further improve the strength of air-jet vortex spinning core-spun yarn.

Method The core-spun yarn with low melting point polyester filament wrapped by polyester staple fiber was produced on MVS No.870 spinning machine, and the yarn was subjected to non-contact heat treatment on the XPLORE flat traction heating device. The heat treatment process was designed based on Box-Behnken Design (BBD) response surface. The effects of heat treatment temperature, heat treatment speed and draft multiple on the breaking strength, breaking elongation and breaking work of core-spun yarn were investigated by statistical analysis method. At the same time, the response value was optimized to obtain the best heat treatment scheme for the preparation of high strength core-spun yarn.

Results The breaking strength of the core-spun yarn was significantly affected by heat treatment temperature, heat treatment speed, draft multiple, as well as the interaction term of heat treatment temperature and heat treatment speed. The breaking elongation was significantly affected by heat treatment temperature, heat treatment speed, draft multiple, draft multiple secondary term, heat treatment temperature and heat treatment speed interaction term, and heat treatment speed and draft multiple interaction term. The breaking work was significantly affected by heat treatment temperature, heat treatment speed, draft multiple, heat treatment temperature secondary term, and heat treatment temperature and heat treatment speed interaction term. By analyzing contour plots of the relationship between response value and heat treatment process, it was found that under the same draft multiple, the breaking strength of the core-spun yarn showed an monotonous increase with the heat treatment speed increasing and the heat treatment temperature decreasing. The higher heat treatment temperature led to greater increase in the breaking strength of the core-spun yarn. In addition, at a stable draft multiple, when the heat treatment temperature was lower and the heat treatment speed was higher, the core-spun yarn breaking elongation was higher, and breaking work was higher. When the heat treatment temperature was constant, the breaking strength of the core-spun yarn would increase and the breaking elongation and the breaking work would decrease with the increase of the draft multiple. Combining the results of contour plots and response optimizer processing, the optimal heat treatment process parameters were obtained, with heat treatment temperature being 130 ℃, draft multiple 1.00, and heat treatment speed is 9 000 mm/min. After the heat treatment of the raw yarns, the yarn properties were improved, the longitudinal morphology of the core yarns became more compact, and some of the single fibers were bonded to each other in the cross-section. After the optimal heat treatment process, the yarn properties were improved, the longitudinal morphology of the core-spun yarn became more compact, and there was adhesion between some single fibers in the cross section.

Conclusion Air-jet vortex spinning was to prepare low melting point filament core-spun yarn. Through heat treatment process, the core-filament was partially melted, effectively limiting the slip of fibers in air-jet vortex spinning, and the cohesion between fibers can be improved. The breaking strength, breaking elongation and breaking work of the yarn are closely related to the setting of heat treatment temperature, heat treatment speed and draft multiple. In general, with the decrease of heat treatment temperature and draft multiple, and the increase of heat treatment speed, the breaking strength and breaking elongation of core-spun yarn increase, so the breaking work also increases. Using the optimized heat treatment process, the core-spun yarn breaking strength is increased by 7.64%, the breaking elongation is increased by 9.34%, and the breaking work is increased by 13.78%.

Key words: air-jet vortex spinning core-spun yarn, low melting point filament, heat treatment process, mechanical properties of yarn, spinning technology

中图分类号: 

  • TS104.2

图1

热处理装置示意图"

表1

热处理工艺的因素水平表"

水平 热处理
温度A/℃
热处理速度
B/(mm·min-1)
牵伸
倍数C
-1 130 1 000 1
0 180 5 000 1.03
1 230 9 000 1.06

表2

热处理工艺的试验与纱线力学性能结果"

热处理
序号
A B C 断裂强度
X/(cN·tex-1)
断裂伸长率
Y/%
断裂功
Z/(cN·mm)
1 -1 -1 0 14.17 6.49 5 124.28
2 1 -1 0 15.33 6.42 5 465.42
3 -1 1 0 17.65 8.68 9 484.62
4 1 1 0 13.53 6.71 5 119.64
5 -1 0 -1 16.19 8.68 8 547.99
6 1 0 -1 13.28 7.93 5 768.69
7 -1 0 1 16.42 7.25 6 450.69
8 1 0 1 14.53 5.62 4 336.83
9 0 -1 -1 13.88 8.05 6 227.47
10 0 1 -1 15.49 8.26 7 112.08
11 0 -1 1 14.89 5.72 4 493.73
12 0 1 1 16.70 7.5 6 801.16
13 0 0 0 15.00 7.02 5 712.38
14 0 0 0 13.95 6.91 5 431.18
15 0 0 0 14.02 6.63 5 225.67

表3

响应曲面的回归分析"

方差
来源
断裂强度X 断裂伸长率Y 断裂功Z
F P F P F P
A 28.78 0.002 42.82 0.000 87.11 0.000
B 12.43 0.012 43.79 0.000 56.90 0.000
C 6.54 0.043 102.24 0.000 34.04 0.001
A2 1.79 0.230 7.45 0.034
B2 3.40 0.115 4.25 0.085
C2 2.56 0.161 10.28 0.013 3.74 0.101
AB 26.65 0.002 15.82 0.004 48.53 0.000
BC 10.80 0.011 4.44 0.080
回归模型 11.60 0.002 37.62 0.000 30.56 0.000
失拟值 0.64 0.686 1.55 0.443 2.37 0.318

图2

包芯纱断裂强度响应值与热处理工艺关系的等值线图"

图3

包芯纱断裂伸长率响应值与热处理工艺关系的等高值图"

图4

包芯纱断裂功响应值与热处理工艺关系的等高值图"

表4

响应值优化参数"

类别 断裂强度
X/(cN·tex-1)
断裂伸长率
Y/%
断裂功
Z/(cN·mm)
范围 >13.28 >5.62 >4 336.83
目标 17.65 8.68 9 484.62
权重 0.5 0.5 1

图5

喷气涡流纺包芯纱热处理前后纵向和横向形态照片"

表5

热处理工艺优化与验证"

A B C 断裂强度
X/(cN·tex-1)
断裂伸长率
Y/%
断裂功
Z/(cN·mm)
预测 实际 预测 实际 预测 实际
-1 1 -1 18.06 16.91 9.42 9.25 10 338 8 220.82

表6

独立样本检验结果"

性能指标 Levene方差齐次检验
(H0:σ1=σ2)
均值等同性t检验
(H0:μ1=μ2)
F P T P
断裂强度X 0.423 0.516 4.981 0.000
断裂伸长率Y 0.881 0.350 6.692 0.000
断裂功Z 0.152 0.697 5.192 0.000
[1] UYANIK S, BAYKAL P D. Effects of fiber types and blend ratios on Murata vortex yarn properties[J]. The Journal of the Textile Institute, 2017, 109(8):1099-1109.
[2] 刘俊芳, 彭珺, 赵东焕, 等. 中空涤纶莫代尔亚麻混纺喷气涡流纱的纺制[J]. 棉纺织技术, 2016, 44(9): 67-70.
LIU Junfang, PENG Jun, ZHAO Donghuan, et al. Spinning of hollow polyester modal flax blended air-jet vortex yarn[J]. Cotton Textile Technology, 2016, 44(9): 67-70.
[3] 戴俊, 高卫东, 傅佳佳, 等. 喷气涡流纺纺制纯棉细号纱的实践[J]. 棉纺织技术, 2019, 47(7): 61-64.
DAI Jun, GAO Weidong, FU Jiajia, et al. Spinning pure cotton air-jet vortex fine yarn[J]. Cotton Textile Technology, 2019, 47(7): 61-64.
[4] HAN C, CHENG L, GAO W, et al. Numerical simulation of the fiber trajectories in vortex spinning under different process parameters based on the finite element model[J]. Textile Research Journal, 2018, 89(13): 2626-2636.
[5] BHATTI M R A, TAUSIF M, MIR M A, et al. Effect of key process variables on mechanical properties of blended vortex spun yarns[J]. The Journal of the Textile Institute, 2018, 110(6): 932-940.
[6] 陈彩红, 陈洪立. 喷气涡流纺喷孔数量对喷嘴内气流场的影响[J]. 轻工机械, 2017, 35(1): 64-66.
CHEN Caihong, CEHN Hongli. Influences of orifice number of air jet vortex spinning[J]. Light Industry Machinery, 2017, 35(1): 64-66.
[7] SHANG S, SUN N, YU C, et al. Optimization of nozzle structure parameters of vortex spinning[J]. Textile Research Journal, 2014, 85(9): 998-1006.
[8] 邹专勇, 俞建勇, 薛文良, 等. 喷气涡流纺喷嘴内部三维流场的数值研究[J]. 纺织学报, 2008, 9(2):86-90.
ZOU Zhuanyong, YU Jianyong, XUE Wenliang, et al. Numerical study of three-dimensional flow field inside the nozzle of air jet vortex spinning[J]. Journal of Textile Research, 2008, 9(2): 86-90.
[9] HAN C, CHENG L, GAO W, et al. Analysis of the influence of the guided needle structure on the vortex spinning process and yarn properties[J]. Textile Research Journal, 2019, 89(7): 1246-1267.
[10] 闫琳琳, 邹专勇, 卫国, 等. 基于螺旋导引槽空心锭子的喷气涡流纺加捻腔流场模拟[J]. 纺织学报, 2018, 39(9):139-145.
YAN Linlin, ZOU Zhuanyong, WEI Guo, et al. Numerical simulation for twisting chamber of air jet vortex spinning based on hollow spindle with spiral guiding grooves[J]. Journal of Textile Research, 2018, 39(9): 139-145.
[11] YAN L, ZOU Z, CHENG L, et al. Numerical simulation of flow field in the twisting chamber of Murata vortex spinning based on the hollow spindle with different structures[J]. Textile Research Journal, 2019, 89(4): 645-656.
[12] 邹专勇, 缪璐璐, 董正梅, 等. 喷气涡流纺工艺对粘胶/涤纶包芯纱性能的影响[J]. 纺织学报, 2022, 43(8): 27-33.
ZOU Zhuanyong, MIAO Lulu, DONG Zhengmei, et al. Effect of air-jet vortex spinning process on properties of viscose/polyester core-spun yarns[J]. Journal of Textile Research, 2022, 43(8): 27-33.
[13] 韦炜, 汤清伦, 姚远, 等. 基于低熔点涤纶长丝的棉涤氨包芯纱开发[J]. 针织工业, 2019(11): 6-9.
WEI Wei, TANG Qinglun, YAO Yuan, et al. Development of core spun yarn using cotton,spandex and low-melting temperature polyester filament[J]. Knitting Industries, 2019(11): 6-19.
[14] 汤清伦, 韦炜, 姚远. 热处理对含低熔点涤纶长丝针织物性能的影响[J]. 针织工业, 2020(10): 20-24.
TANG Qinglun, WEI Wei, YAO Yuan. Influence of heat treatment on properties of knitted fabrics with low melting point polyester filament[J]. Knitting Industries, 2020(10): 20-24.
[15] 林燕燕, 邹专勇, 陈玉香, 等. 喷气涡流纺纱线热黏合增强工艺[J]. 纺织学报, 2019, 40(2): 58-62.
LIN Yanyan, ZOU Zhuanyong, CHEN Yuxiang, et al. Hot adhesion reinforcement technology of jet vortex spinning yarn[J]. Journal of Textile Research, 2019, 40(2): 58-62.
[16] 陈玉香, 虞美雅, 董正梅, 等. 喷气涡流纺纱线热粘合增强工艺优化与机制[J]. 纺织学报, 2020, 41(11): 48-52.
doi: 10.13475/j.fzxb.20200400805
CHEN Yuxiang, YU Meiya, DONG Zhengmei, et al. Analyzes on the mechanism and optimization of the enhanced process based on thermal adhesion for air jet vortex spun yarn[J]. Journal of Textile Research, 2020, 41(11): 48-52.
doi: 10.13475/j.fzxb.20200400805
[1] 李文雅, 周剑, 廖昙倩, 董真真. 薄鞘高包覆涤纶/棉包芯纱的结构控制及其工艺[J]. 纺织学报, 2024, 45(06): 46-52.
[2] 邹专勇, 缪璐璐, 董正梅, 郑国全, 付娜. 喷气涡流纺工艺对粘胶/涤纶包芯纱性能的影响[J]. 纺织学报, 2022, 43(08): 27-33.
[3] 赵洋洋, 薛元, 刘曰兴, 张国清. 竹节纱粗细节形成机制及其纺纱工艺比较[J]. 纺织学报, 2019, 40(03): 39-43.
[4] 顾燕, 薛元, 杨瑞华, 高卫东, 刘曰兴, 张国清. 三通道数码纺段彩纱的纺纱原理及其性能[J]. 纺织学报, 2019, 40(01): 46-51.
[5] 程岚 薛雯 张同华. 不锈钢纤维/棉复合纱的开发及其性能[J]. 纺织学报, 2014, 35(7): 36-0.
[6] 薛元;李翔;汤成坦. 四组分长丝/短纤包芯复合纱的成纱工艺、结构及其性能[J]. 纺织学报, 2009, 30(12): 22-25.
[7] 高山;郭洪为;陈国华. 基于棉纺设备的不锈钢短纤维/棉混纺纱工艺[J]. 纺织学报, 2006, 27(5): 87-89.
[8] 薛元;易洪雷;陈伟雄;曹艳. 短纤/长丝芯鞘型复合纱成纱机制与工艺[J]. 纺织学报, 2006, 27(10): 92-95.
[9] 赵博;. 复合纱产品开发与工艺研究[J]. 纺织学报, 2005, 26(4): 102-104.
[10] 丁志荣;钮红辛. 纺纱工艺的自动设计系统[J]. 纺织学报, 2002, 23(04): 42-43.
[11] 张玉清. Tencel纤维针织纱纺制工艺探讨[J]. 纺织学报, 2001, 22(03): 22-23.
[12] 郁崇文;张元明;姜繁昌;毕志明;王启祥. 菠萝纤维的纺纱工艺研究[J]. 纺织学报, 2000, 21(06): 24-26.
[13] 魏保平;李昌;戚鹏. 变异─长度曲线在优化纺纱工艺提高产品质量中的应用[J]. 纺织学报, 1999, 20(04): 18-20.
[14] 陈鸿坤;刘启智;吴巧蓉;赵玉林;熊武. 用新疆细羊毛纺制高支纱的工艺研究[J]. 纺织学报, 1999, 20(01): 24-26.
[15] 唐淑娟;冷纯廷;程宏;李旭阳. 喷气纺纱工艺技术探讨[J]. 纺织学报, 1999, 20(01): 22-23.
Viewed
Full text
11
HTML PDF
Just accepted Online first Issue Just accepted Online first Issue
0 0 5 0 0 6

  From Others local
  Times 3 8
  Rate 27% 73%

Abstract
54
Just accepted Online first Issue
0 0 54
  From Others local
  Times 45 9
  Rate 83% 17%

Cited

Web of Science  Crossref   ScienceDirect  Search for Citations in Google Scholar >>
 
This page requires you have already subscribed to WoS.
  Shared   
  Discussed   
No Suggested Reading articles found!