纺织学报 ›› 2025, Vol. 46 ›› Issue (01): 95-102.doi: 10.13475/j.fzxb.20230903301

• 纺织工程 • 上一篇    下一篇

织物增强橡胶基复合材料本构模型及其应用

孙戬1,2(), 王彤1, 陈云辉1, 林何1,2, 刘晖1,2, 成小乐1,2   

  1. 1.西安工程大学 机电工程学院, 陕西 西安 710048
    2.西安市现代智能纺织装备重点实验室, 陕西 西安 710048
  • 收稿日期:2023-09-14 修回日期:2024-06-23 出版日期:2025-01-15 发布日期:2025-01-15
  • 作者简介:孙戬(1984—),男,副教授,博士。主要研究方向为复合材料力学、工程中的有限元仿真等。E-mail:sunjian@xpu.edu.cn
  • 基金资助:
    国家自然科学基金青年科学基金项目(51805402);陕西省自然科学基础研究计划项目(2022JM-362);西安市现代智能纺织装备重点实验室建设项目(2019220614SYS021CG043);湖北省数字化纺织装备重点实验室开放课题项目(KDTL2023002)

Constitutive model and application of fabric reinforced rubber composites

SUN Jian1,2(), WANG Tong1, CHEN Yunhui1, LIN He1,2, LIU Hui1,2, CHENG Xiaole1,2   

  1. 1. College of Mechanical and Electrical Engineering, Xi'an Polytechnic University, Xi'an, Shaanxi 710048, China
    2. Xi'an Key Laboratory of Modern Intelligent Textile Equipment, Xi'an, Shaanxi 710048, China
  • Received:2023-09-14 Revised:2024-06-23 Published:2025-01-15 Online:2025-01-15

摘要: 为更准确地表征织物增强橡胶基复合材料在受力变形过程中的力学性能,针对二维编织物结构,基于连续介质力学将织物增强橡胶基复合材料应变能解耦为橡胶基体应变能、纤维拉伸应变能以及纤维之间相互作用引起的剪切应变能,结合橡胶、织物增强复合材料的单轴拉伸及镜框剪切实验数据拟合得到本构模型参数。通过对织物增强密封带压缩仿真结果与实验数据进行比较,验证了所建立的舱门密封有限元模型的有效性,随后将织物增强橡胶基复合材料超弹性本构模型应用于飞机舱门压缩过程的模拟分析。结果表明:超弹性本构模型能够用于表征织物增强复合材料的各向异性非线性材料行为;经向/纬向纤维与密封带轴向呈0°角铺设方式的密封性能优于45°角铺设,舱门的密封性能与门框的加载量成正比关系。

关键词: 机织物, 橡胶, 织物增强复合材料, 橡胶密封件, 本构模型, 舱门密封带, 密封性, 有限元法

Abstract:

Objective Considering that rubber seals are produced in the process of vulcanization molding, rubber penetration into the fabric will affect the deformation law of the fabric, which in turn affects the overall performance of the seals, the composite of fabric and rubber is regarded as an aramid fabric rubber reinforcement layer, and the constitutive model of fabric reinforced rubber composites is applied in order to more accurately characterize the mechanical properties of the fabric reinforced rubber composites in the process of deformation under force.

Method The continuous medium mechanics theory was applied to decouple the strain energy of fabric-reinforced rubber composites, and the parameters of the constitutive model were obtained by combining with the experiment data fitting. For the established hatch sealing belt model, the conventional finite element analysis method, and the fabric reinforced rubber composite hyperelastic constitutive model were utilized to simulate the compression process of the hatch sealing belt, respectively. The simulation results of the compression of the hatch sealing belt were compared with the experimental data.

Results According to the conventional finite element analysis method, the rubber matrix and fabric are considered separately. The Yeoh hyperelastic constitutive model was chosen to characterize the rubber material, and the aramid fabric reinforcement layer was simplified as LAMINA unit. The trend of the load-compression curve per unit length obtained from the simulation analysis of the hatch sealing belt model was basically the same as that obtained from the compression experiments of the aramid fabric reinforced seals, which verified the accuracy of the finite element model. Subsequently, the fabric reinforced rubber composite hyperelastic constitutive model was applied to the simulation analysis of the compression process of the aircraft hatch, and the effects of fabric fiber stretching and fiber cross-shear between warp and weft yarns on the sealing performance of the sealing belt were fully considered. In order to investigate the effect of different fiber laying angles on the sealing performance of the hatch sealing belt, the laying mode is that the warp/weft fibers are at 0° or 45° to the axial direction of the sealing belt. The results show that: the hyperelastic constitutive model of fabric reinforced rubber composites can be used to characterize the anisotropic nonlinear material behavior of fabric reinforced composites; the maximum shear angles of 45° and 0° of fiber lay-up do not differ much, which are 19.70° and 20.60°, respectively, but the difference in the region of wrinkles is obvious. Compared with the 45° lay-up method, the 0° lay-up fiber aramid fabric rubber reinforcement layer was more anti-wrinkle and the sealing performance of the sealing belt was better. After the shear angle changes to 18°, as the shear angle continues to increase, the unit load pressure of the warp/weft fibers laid at 0° to the sealing belt axial direction shows a linear upward trend, and the sealing member has a greater reaction force on the compression strip, and the sealing effect is better. Therefore, the sealing performance of the way of laying the warp/weft fibers and sealing belt axially at 0° is better than the way of laying at 45°. The sealing performance of the hatch is directly proportional to the loading of the door frame.

Conclusion The strain energy function of fabric reinforced rubber composites was decomposed into rubber matrix strain energy, fiber stretches, and shear deformation energy by virtue of the interaction between fibers based on continuum mechanics. Application of fabric reinforced rubber constitutive model to simulate the compression process of hatch sealing belt, considering the effect of shear deformation and tensile deformation of aramid fabric fiber in the compression process of sealing belt. The sealing performance obtained from the analysis of this constitutive model is better than that of the conventional analytical model, and it is suitable for the characterization of fabric reinforced rubber composite materials in the deformation process of the anisotropic mechanical behavior.

Key words: woven fabric, rubber, fabric reinforced composite, rubber seal, constitutive model, hatch sealing belt, tightness, finite element method

中图分类号: 

  • TB332

图1

纯橡胶单轴拉伸实验拟合曲线"

图2

单向拉伸应变能密度 W T a 与 I 4 - 1曲线"

图3

剪切力-剪切角拟合曲线"

图4

舱门密封带有限元模型"

表1

橡胶及芳纶织物参数"

橡胶基体 内部增强芳纶织物
c1 c2 c3 D E1 E2 μ
0.86 -1.42 5.23 0.099 27.70 11.80 0.18

表2

织物增强橡胶基复合材料本构模型参数"

橡胶基体 内部增强织物橡胶复合层
c1 c2 c3 D k1 k2 k3 k4 k5 k6
0.86 -1.42 5.23 0.099 6.30 94.30 27 350.68 0.015 0.089 0.042

图5

舱门密封带压缩单位长度载荷与压缩率曲线"

图6

剪切角分布云图"

图7

单位载荷压力-剪切角曲线"

[1] GAO X H, YUAN L, FU Y T, et al. Prediction of mechanical properties on 3D braided composites with void defects[J]. Composites Part B: Engineering, 2020. DOI: 10.1016/j.compositesb.2020.108164.
[2] 徐铭涛, 嵇宇, 仲越, 等. 碳纤维/环氧树脂基复合材料增韧改性研究进展[J]. 纺织学报, 2022, 43(9): 203-210.
XU Mingtao, JI Yu, ZHONG Yue, et al. Review on toughening modification of carbon fiber/epoxy resin composites[J]. Journal of Textile Research, 2022, 43(9): 203-210.
[3] 王东辉, 戈嗣诚, 王立武, 等. 柔性舱O型密封圈密封性能分析[J]. 航天返回与遥感, 2021, 42(1): 48-56.
WANG Donghui, GE Sicheng, WANG Liwu, et al. Analysis of the sealing performance of O-ring in flexible cabin[J]. Spacecraft Recovery & Remote Sensing, 2021, 42(1): 48-56.
[4] 杨恒, 柯玉超, 王申, 等. 航空橡胶密封件力学与密封性能检测技术[J]. 航空制造技术, 2017(22): 106-109.
YANG Heng, KE Yuchao, WANG Shen, et al. Measurement technologies of mechanical and seal performance for aviation rubber seals[J]. Aeronautical Manufacturing Technology, 2017(22): 106-109.
[5] DONG Y, YANG H, YAN H, et al. Design and characteristics of fabric rubber sealing based on microchannel model[J]. Composite Structures, 2019. DOI: 10.1016/j.compstruct.2019.111463.
[6] FU Y, DONG Y. Evaluation of key performance of aircraft fabric rubber seal during flight[J]. Journal of Aircraft, 2021, 58(5): 1154-1167.
[7] XU X, YAO X, DONG Y, et al. Mechanical behaviors of non-orthogonal fabric rubber seal[J]. Composite Structures, 2021. DOI: 10.1016/j.compstruct.2020.113453.
[8] YANG H, YAO X, YAN H, et al. Anisotropic hyper-viscoelastic behaviors of fabric reinforced rubber composites[J]. Composite Structures, 2018, 187: 116-121.
[9] PENG X, GUO Z, DU T, et al. A simple anisotropic hyperelastic constitutive model for textile fabrics with application to forming simulation[J]. Composites Part B: Engineering, 2013, 52: 275-281.
[10] GONG Y, YAN D, YAO Y, et al. An anisotropic hyperelastic constitutive model with tension-shear coupling for woven composite reinforcements[J]. International Journal of Applied Mechanics, 2017. DOI: 10.1142/S1758825117500831.
[11] 黄小双, 姚远, 彭雄奇, 等. 考虑双拉耦合的复合材料编织物各向异性超弹性本构模型[J]. 复合材料学报, 2016, 33(10): 2319-2324.
HUANG Xiaoshuang, YAO Yuan, PENG Xiongqi, et al. Anisotropic hyperelastic constitutive model with biaxial tension coupling for woven fabric composites[J]. Acta Materiae Compositae Sinica, 2016, 33(10): 2319-2324.
[12] KENJA K, MADIREDDY S, VEMAGANTI K. Calibration of hyperelastic constitutive models: the role of boundary conditions, search algorithms, and experimental variability[J]. Biomechanics and Modeling in Mechanobiology, 2020, 19: 1935-1952.
[13] CHARMETANT A, VIDAL-SALLÉ E, BOISSE P. Hyperelastic modelling for mesoscopic analyses of composite reinforcements[J]. Composites Science and Technology, 2011, 71(14): 1623-1631.
[14] WANG Y Z, LUO W A, HUANG J W, et al. Simplification of hyperelastic constitutive model and finite element analysis of thermoplastic polyurethane elastomers[J]. Macromolecular Theory and Simulations, 2020. DOI: 10.1002/mats.202000009.
[15] 郭国栋, 彭雄奇, 赵宁. 一种考虑剪切作用的各向异性超弹性本构模型[J]. 力学学报, 2013, 45: 451-455.
GUO Guodong, PENG Xiongqi, ZHAO Ning, et al. An anisotropic hyperelastic constitutive model with shear interaction for cord-rubber tire composites[J]. Theoretical and Applied Mechanics, 2013, 45: 451-455.
[16] GONG Y, PENG X, YAO Y, et al. An anisotropic hyperelastic constitutive model for thermoplastic woven composite prepregs[J]. Composites Science and Technology, 2016, 128: 17-24.
[17] 张守京, 陈云辉, 孙戬. 编织角对复合材料弹性性能的影响[J]. 西安工程大学学报, 2022, 36(1): 25-30.
ZHANG Shoujing, CHEN Yunhui, SUN Jian. Effect of braiding angle on the elastic properties of composites[J]. Journal of Xi'an Polytechnic University, 2022, 36(1): 25-30.
[18] NOSRAT-NEZAMI F, GEREKE T, EBERDT C, et al. Characterisation of the shear-tension coupling of carbon-fibre fabric under controlled membrane tensions for precise simulative predictions of industrial preforming processes[J]. Composites Part A: Applied Science and Manufacturing, 2014, 67: 131-139.
[19] MOGHADDAMH S, KESHAVANARAYANA S R, YANG C, et al. Anisotropic hyperelastic constitutive modeling of in-plane finite deformation responses of commercial composite hexagonal honeycombs[J]. Journal of Sandwich Structures and Materials, 2022, 24(1): 5-34.
[20] 黄玮, 苏幼坡, 韩流涛, 等. 聚氨酯橡胶减震支座竖向性能试验研究[J]. 建筑结构学报, 2020, 41: 70-76.
HUANG Wei, SU Youpo, HAN Liutao, et al. Experimental study on vertical performance of polyurethane rubber shock absorption bearing[J]. Journal of Building Structures, 2020, 41: 70-76.
[21] 毛金威, 王新峰, 宋豪鹏, 等. 涤纶增强橡胶基复合材料各向异性超弹性本构研究[J]. 南京航空航天大学学报, 2023, 55(1): 28-34.
MAO Jinwei, WANG Xinfeng, SONG Haopeng, et al. Study on anisotropic hyperelastic constitutive model of polyester reinforced rubber composites[J]. Journal of Nanjing University of Aeronautics & Astronautics, 2023, 55(1): 28-34.
[22] WANG P, HAMILA N, PINEAU P, et al. Thermomechanical analysis of thermoplastic composite prepregs using bias-extension test[J]. Journal of Thermoplastic Composite Materials, 2014, 27(5): 679-698.
[23] 王增辉. 飞机舱门密封带的仿真优化设计[J]. 特种橡胶制品, 2019, 40(1): 46-51.
WANG Zenghui. Simulation analysis of aircraft hatch sealing belt[J]. Special Purpose Rubber Products, 2019, 40(1): 46-51.
[24] THÖRMANN S, MARKIEWICZ M, VON ESTORFF O. On the stick-slip behaviour of water-lubricated rubber sealings[J]. Journal of Sound and Vibration, 2017, 399: 151-168.
[25] FRANKE Goularte B, ZATKO V, LION A, et al. Elastomeric door seal analysis under aircraft cabin pressure[J]. Journal of Rubber Research, 2021, 24: 301-318.
[26] 严雪, 许希武, 张超. 二维三轴编织复合材料的弹性性能分析[J]. 固体力学学报, 2013, 34: 140-151.
YAN Xue, XU Xiwu, ZHANG Chao. Analysis of elastic properties of 2D triaxial braided composites[J]. Chinese Journal of Solid Mechanics, 2013, 34: 140-151.
[27] 鲍益东, 何瑞, 宋云鹤, 等. 二维编织碳纤维增强树脂复合材料一步法铺层展开[J]. 复合材料学报, 2022, 39(7): 3144-3155.
BAO Yidong, HE Rui, SONG Yunhe, et al. One-step spreading for 2D woven carbon fiber reinforced plastics[J]. Acta Materiae Compositae Sinica, 2022, 39(7): 3144-3155.
[28] 袁修起. 飞机舱门橡胶密封件力学与密封性能研究[J]. 化工新型材料, 2021, 49(6): 249-252.
YUAN Xiuqi. Study on mechanical and seal performance of rubber seal for aircraft door[J]. New Chemical Materials, 2021, 49(6): 249-252.
[1] 李鑫, 叶培培, 赵晓曼, 王鸿博, 杨国荣, 洪剑寒. 氧化铋-硅橡胶基X射线防护织物的制备及性能[J]. 纺织学报, 2025, 46(02): 227-235.
[2] 刘仁义, 杨琴, 孙宝忠, 顾伯洪, 张威. 织物增强复合材料的电热驱动形状记忆回复行为[J]. 纺织学报, 2025, 46(01): 72-79.
[3] 李慧敏, 刘淑强, 杜琳琳, 张曼, 吴改红. 玄武岩/聚酰亚胺三维间隔机织物的参数化建模及高温环境传热数值模拟[J]. 纺织学报, 2025, 46(01): 87-94.
[4] 田少萌, 张丽, 石浩轩, 徐阳. 基于ANSYS Workbench的高密机织滤料动态形变模拟与分析[J]. 纺织学报, 2024, 45(09): 63-69.
[5] 徐辉, 朱昊, 潘苏情, 史红艳, 应迪. 基于变截面复丝模型的机织物模拟[J]. 纺织学报, 2024, 45(05): 70-78.
[6] 石路健, 宋亚伟, 谢汝义, 高志超, 房宽峻. 莱赛尔机织物防原纤化前处理工艺优化[J]. 纺织学报, 2023, 44(12): 96-105.
[7] 杨孟想, 刘让同, 李亮, 刘淑萍, 李淑静. 机织物的热传递与强热条件下热防护性能[J]. 纺织学报, 2023, 44(11): 74-82.
[8] 王旭, 闵尔君, 李少聪, 张文强, 彭旭光. 基于平织机的管状三维机织物设计及其矩阵模型[J]. 纺织学报, 2023, 44(08): 103-109.
[9] 应志平, 王伟青, 吴震宇, 胡旭东. 三维正交机织复合材料的冲后压缩性能[J]. 纺织学报, 2023, 44(01): 129-135.
[10] 肖琪, 王瑞, 张淑洁, 孙红玉, 王静茹. 基于ABAQUS的涤/棉混纺机织物起球过程有限元仿真[J]. 纺织学报, 2022, 43(06): 70-78.
[11] 魏小玲, 李瑞雪, 秦卓, 胡新荣, 林富生, 刘泠杉, 龚小舟. 经向T结构预制体成型关键技术[J]. 纺织学报, 2021, 42(11): 51-55.
[12] 刘俊立, 徐志高, 张峰, 田干, 杨正伟, 王玉. 编织热密封组件的高温密封性能[J]. 纺织学报, 2021, 42(10): 84-91.
[13] 汪泽幸, 李帅, 谭冬宜, 孟硕, 何斌. 循环加载处理对聚氯乙烯涂层膜材料蠕变性能的影响[J]. 纺织学报, 2021, 42(07): 101-107.
[14] 黄锦波, 祝成炎, 张红霞, 洪兴华, 周志芳. 基于剑杆织机改造的三维间隔机织物工艺设计[J]. 纺织学报, 2021, 42(06): 166-170.
[15] 孟朔, 夏旭文, 潘如如, 周建, 王蕾, 高卫东. 基于卷积神经网络的机织物密度均匀性检测[J]. 纺织学报, 2021, 42(02): 101-106.
Viewed
Full text
24
HTML PDF
Just accepted Online first Issue Just accepted Online first Issue
0 0 7 0 0 17

  From Others local
  Times 10 14
  Rate 42% 58%

Abstract
86
Just accepted Online first Issue
0 0 86
  From Others local
  Times 66 20
  Rate 77% 23%

Cited

Web of Science  Crossref   ScienceDirect  Search for Citations in Google Scholar >>
 
This page requires you have already subscribed to WoS.
  Shared   
  Discussed   
No Suggested Reading articles found!