纺织学报 ›› 2024, Vol. 45 ›› Issue (04): 1-7.doi: 10.13475/j.fzxb.20230907201

• 纺织科技新见解学术沙龙专栏:绿色功能与智能纺织品 •    下一篇

纤维素水凝胶纤维的制备及其阻燃传感性能

刘懿德1, 李凯1, 姚久勇1, 成芳芳2, 夏延致1,3()   

  1. 1.青岛大学 材料科学与工程学院, 山东 青岛 266071
    2.青岛源海新材料科技有限公司, 山东 青岛 266000
    3.青岛大学 省部共建生物多糖纤维成形与生态纺织国家重点实验室, 山东 青岛 266071
  • 收稿日期:2023-09-29 修回日期:2023-12-25 出版日期:2024-04-15 发布日期:2024-05-13
  • 通讯作者: 夏延致(1961—),男,教授,博士。主要研究方向为功能纤维材料。E-mail:xiayz@qdu.edu.cn。
  • 作者简介:刘懿德(1995—),男,博士生。主要研究方向为生物基阻燃纤维。
  • 基金资助:
    泰山学者攀登计划项目(tspd20181208)

Preparation of cellulose hydrogel fiber and its flame retardancy and sensing property

LIU Yide1, LI Kai1, YAO Jiuyong1, CHENG Fangfang2, XIA Yanzhi1,3()   

  1. 1. College of Materials Science and Engineering, Qingdao University, Qingdao, Shandong 266071, China
    2. Qingdao YuanhaiNew Material Technology Co., Ltd., Qingdao, Shandong 266000, China
    3. State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, Qingdao, Shandong 266071, China
  • Received:2023-09-29 Revised:2023-12-25 Published:2024-04-15 Online:2024-05-13

摘要:

针对纤维素纤维易燃、功能单一的问题,利用羧甲基化反应引入羧基和金属离子,赋予其阻燃性和吸水性;改性纤维吸水后得到离子导电的水凝胶纤维。借助扫描电子显微镜、氧指数仪、微型量热仪、热重分析仪、单纤维强力仪等分析其阻燃性、热稳定性和力学强度等性能,研究了不同形变条件下纤维素水凝胶纤维的电流信号响应规律。结果表明:纤维素纤维经羧甲基化改性后,极限氧指数从(17.8±0.9)%提高到(35.3±0.9)%;热释放速率峰值和总热释放量分别下降了70.1%和49.4%,基于金属离子优异的阻燃性能和催化成炭能力,燃烧后炭层的致密性高;改性纤维经过吸水后,在不同形变情况下可产生相应的电流响应,具有应变传感能力。纤维素基水凝胶纤维耐燃烧且对物理形变具有灵敏的信号变化,在阻燃及柔性传感领域具有发展潜力。

关键词: 纤维素纤维, 羧甲基化, 水凝胶纤维, 阻燃, 传感性能

Abstract:

Objective Lyocell fiber is a novel eco-friendly fiber produced through solvent spinning techniques with excellent flexibility and mechanical strength. Due to the outstanding performance, Lyocell fiber is extensively utilized in the textile, household, and medical sectors, rendering it an ideal substrate for fabricating functional fibers. However, Lyocell fiber is composed entirely of cellulose, poses a significant flammability risk. Simultaneously, its inherent insulating properties also impede the advancement of Lyocell fiber in the realm of flexible electronics. Therefore, enhancing the flame retardancy and electrical conductivity of Lyocell fiber is imperative to expand their functional applications.

Method In order to address the issues of flammability and limited functionality in cellulose fiber, this study utilized Lyocell fiber as the primary research material and employed a typically etherification reaction strategy to modify. By introducing carboxyl groups and metal ions (Na+), flame retardancy and water absorption properties were imparted, resulted in the formation of an ionic conductive hydrogel fiber upon water absorption. The surface morphology of the modified fiber was characterized, and flame retardancy of the carboxymethylated fiber as well as the sensing performance of the hydrogel fiber were investigated.

Results The carboxymethylation modification of Lyocell fiber had excellent flame retardancy and water absorption properties. The morphology of modified fiber remains similar to original fiber, exhibited a smooth outer surface. In thermogravimetric analysis, due to the introduction of carboxyl and Na+, the residual carbon content of the modified fiber was significantly increased from 17.0% to 24.4%. The limiting oxygen index (LOI) of original Lyocell fiber was merely 17.8%. However, the LOI of fiber can be significantly enhanced to reach an impressive 35.3% through carboxymethylation modification, thereby ensuring its non-ignitability even over prolonged periods in fire. The presence of metal ions exerted a flame retardant effect, resulting in a significant reduction in the peak heat release rate (PHRR) of Lyocell-Na from 184.4 W/g to 55.2 W/g. Moreover, the total heat release (THR) and heat release capacity (HRC) also decreased by 49.4% and 40.7%, respectively. It is noteworthy that Lyocell-Na exhibited a characteristic double heat release peak. This phenomenon arose from the promotion of carbonization in the fiber matrix by Na+, resulting in the formation of a dense barrier carbon layer on the fiber surface during the initial stage of combustion. Once sufficient heat accumulated within this carbon layer, it eventually breaches, leading to the second heat release peak. Compared to pure Lyocell fiber, the tensile strength of the fiber slightly decreased after carboxymethylation, from 3.9 cN/dtex to 3.2 cN/dtex. This could be attributed to that the reaction was carried out in an alkaline environment, and NaOH would decrease the crystallinity of Lyocell fiber, consequently impacted its mechanical strength. The hydrogel fiber showed a sensitive cyclic response to changes in finger bending angle. When the hydrogel fiber was attached to the finger joint for bending cycle action, it underwent deformation to yield and exhibited varying rates of current change corresponding to different bending angles.

Conclusion Cellulose-based hydrogel fiber was successfully prepared from Lyocell fiber by etherification reaction. By introducing carboxyl groups and metal ions into the molecular chain, the flame retardancy and water absorption of Lyocell fibers were significantly improved. Moreover, the gelled fiber exhibits a certain level of ionic conductivity upon water absorption. By considering the flame retardant performance, different degrees of deformation can generate corresponding changes in current signals, enabling identification of the operational state. Therefore, this work holds promising prospects for advancement in the field of flexible sensing.

Key words: cellulose fiber, carboxymethylation, hydrogel fiber, flame retardancy, sensitivity

中图分类号: 

  • TQ352.72

图1

莱赛尔纤维羧甲基化改性前后的扫描电镜照片"

图2

莱赛尔纤维和羧甲基化纤维的红外谱图"

图3

莱赛尔纤维和羧甲基化纤维在氮气氛围下的TG和DTG曲线"

图4

酒精灯燃烧测试照片"

图5

莱赛尔纤维和羧甲基化纤维的HRR曲线"

图6

莱赛尔纤维及羧甲基化纤维残炭的SEM照片"

图7

莱赛尔纤维和羧甲基化纤维的拉伸性能曲线"

图8

莱赛尔水凝胶纤维对手指弯曲角度的响应性"

图9

莱赛尔水凝胶纤维对不同手势的识别能力"

图10

水凝胶纤维的循环稳定性"

[1] CHEN Zehong, HU Yijie, SHI Ge, et al. Advanced flexible materials from nanocellulose[J]. Advanced Functional Materials, 2023. DOI: 10.1002/adfm.202214245.
[2] SHI Yifei, JIAO Haixin, SUN Jianzhong, et al. Functionalization of nanocellulose applied with biological molecules for biomedical application: a review[J]. Carbohydrate Polymers, 2022. DOI:10.1016/j.carbpol.2022.119208.
[3] CHEN Yian, ZHANG Cunzhi, TAO Shenming, et al. High-performance smart cellulose nanohybrid aerogel fibers as a platform toward multifunctional textiles[J]. Chemical Engineering Journal, 2023. DOI: 10.1016/j.cej.2023.143153.
[4] XU Rumeng, YIN Chunchun, YOU Jingxuan, et al. Sustainable, thermoplastic and hydrophobic coating from natural cellulose and cinnamon to fabricate eco-friendly catering packaging[J]. Green Energy & Environment, 2022. DOI: 10.1016/j.gee.2022.10.009.
[5] BIAN Ziyu, LI Yinghui, SUN Hongling, et al. Transparent, intrinsically stretchable cellulose nanofiber-mediated conductive hydrogel for strain and humidity sensing[J]. Carbohydrate Polymers, 2023. DOI: 10.1016/j.carbpol.2022.120300.
[6] ZHAO Xing, WANG Liya, TANG Chunyan, et al. Smart Ti3C2Tx MXene fabric with fast humidity response and joule heating for healthcare and medical therapy applications[J]. ACS Nano, 2020, 14: 8793-8805.
doi: 10.1021/acsnano.0c03391 pmid: 32644797
[7] WANG Yonggui, WANG Xiaojie, XIE Yanjun, et al. Functional nanomaterials through esterification of cellulose: a review of chemistry and application[J]. Cellulose, 2018, 25: 3703-3731.
[8] LI Bowen, XU Chaoqun, YU Juan, et al. One-pot cellulose etherification and self-crosslinking via a mild hydroxyl-yne click reaction in a homogeneous system[J]. Green Chemistry, 2023, 25: 2608-2619.
[9] BETHKE Kevin, PALANTOKEN Sinem, ANDREI Virgil, et al. Functionalized cellulose for water purification, antimicrobial applications, and sensors[J]. Advanced Functional Materials, 2018. DOI: 10.1002/adfm.201800409.
[10] WANG Xifeng, LEI Zhiwei, MA Xianda, et al. A lightweight MXene-coated nonwoven fabric with excellent flame retardancy, EMI shielding, and electrothermal/photothermal conversion for wearable heater[J]. Chemical Engineering Journal, 2022. DOI: 10.1016/j.cej.2021.132605.
[11] LIU Yide, LI Kai, YAO Jiuyong, et al. Copper-coordinated cellulose fibers for electric devices with motion sensitivity and flame retardance[J]. ACS Applied Materials & Interfaces, 2023, 15: 18272-18280.
[12] 马君志, 葛红, 王冬, 等. 溶胶-凝胶法改性阻燃粘胶纤维的制备及其性能[J]. 纺织学报, 2021, 42(1): 10-15.
MA Junzhi, GE Hong, WANG Dong, et al. Preparation and properties of sol-gel modified flame retardant viscose fiber[J]. Journal of Textile Research, 2021, 42(1): 10-15.
[13] 张涛, 闫红强, 王丽莉, 等. 基于层层组装法构建阻燃天然纤维素纤维织物的研究进展[J]. 复合材料学报, 2015, 32(1): 13-20.
ZHANG Tao, YAN Hongqiang, WANG Lili, et al. Research process on preparation of flame retardant natural cellulosic fiber fabric via layer-by-layer assembly method[J]. Acta Materiae Compositae Sinica, 2015, 32(1): 13-20.
[14] MA Zhewen, LIU Xiaochen, XU Xiaodong, et al. Bioinspired,highly adhesive, nanostructured polymeric coatings for superhydrophobic fire-extinguishing thermal insulation foam[J]. ACS Nano, 2021, 15: 11667-11680.
doi: 10.1021/acsnano.1c02254 pmid: 34170679
[15] QIAN Xue, LIU Qiang, LI Hui, et al. Combining inherent and additive phosphorus-containing flame retardants for enhancing flame retardancy and smoke suppression effects on polyisocyanurate-polyurethane foam[J]. Polymer Degradation and Stability, 2023. DOI: 10.1016/j.polymdegradstab.2023.110351.
[16] YANG Gesheng, PENG Kang, ZHANG Huihui, et al. Structure and properties of flame-retardant Lyocell fibers prepared by blending method[J]. Polymer Engineering and Science, 2022, 62: 3476-3486.
[17] 任嘉玮, 张圣明, 吉鹏, 等. 磷硅改性阻燃抑熔滴聚酯纤维的制备及其性能[J]. 纺织学报, 2023, 44(2): 1-10.
REN Jiawei, ZHANG Shengming, JI Peng, et al. Preparation and properties of phosphorus-silicon modified flame retardant and anti-dripping polyester fiber[J]. Journal of Textile Research, 2023, 44(2): 1-10.
[18] 宫芳芳, 陶梦伟, 王靖宇, 等. 无卤阻燃热塑性聚烯烃弹性体的研究进展[J]. 中国塑料, 2023, 37(6): 123-130.
doi: 10.19491/j.issn.1001-9278.2023.06.017
GONG Fangfang, TAO Mengwei, WANG Jingyu, et al. Research progress in halogen-free flame-retardant thermoplastic polyolefin materials[J]. China Plastics, 2023, 37(6): 123-130.
doi: 10.19491/j.issn.1001-9278.2023.06.017
[19] LV Jingchun, DAI Yamin, XU Hong, et al. Transforming commercial regenerated cellulose yarns into multifunctional wearable electronic textiles[J]. Journal of Materials Chemistry C, 2020, 8: 1309-1318.
[20] DING Lan, SUN Ling, WANG Ziwei, et al. Multifunctional 2D-3D heterogeneous MXene@ZIF-8 coated cotton/lyocell blended fabrics for fire protection, motion detection and UV-resistance[J]. Chemical Engineering Journal, 2023. DOI: 10.1016/j.cej.2023.145859.
[21] ZHANG Yating, TAN Wei, ZUO Chunlong, et al. A cleaner and sustainable preparation of green flame retardant and antibacterial lyocell fabric[J]. Cellulose, 2023, 30: 6081-6097.
[22] 王柱, 陈洋, 李兴华, 等. 沙柳制备高取代度羧甲基纤维素钠的优化和表征[J]. 造纸科学与技术, 2022, 41(4): 14-18, 46.
WANG Zhu, CHEN Yang, LI Xinghua, et al. Optimization and charaterization of sodium carboxymethyl cellulose with a high degree of substitution from salix psammophila[J]. Paper Science & Technology, 2022, 41(4): 14-18, 46.
[23] LIU Yide, YAO Jiuyong, LI Kai, et al. Enhanced flame retardant performance of poly(vinyl alcohol) composites based on phosphorus-metal ion synergistic effect[J]. New Journal of Chemistry, 2023, 47: 15942-15950.
[24] WANG Lili, ZHANG Tao, YAN Hongqiang, et al. Modification of ramie fabric with a metal-ion-doped flame-retardant coating[J]. Journal of Applied Polymer Science, 2013, 129: 2986-2997.
[1] 王晓萌, 李婷婷, 许炳铨, 林佳弘, 楼静文. 耐用多功能光热阻燃织物的制备及应用[J]. 纺织学报, 2024, 45(04): 120-125.
[2] 胡自强, 骆晓蕾, 魏璐琳, 刘琳. 植酸/壳聚糖对涤纶/棉混纺织物的协同阻燃整理[J]. 纺织学报, 2024, 45(04): 126-135.
[3] 袁野, 张安莹, 魏丽菲, 高建伟, 陈咏, 王锐. 含磷阻燃聚酯的合成动力学及其性能[J]. 纺织学报, 2024, 45(04): 50-58.
[4] 丁倩, 吴俊霖, 江慧, 汪军. 阻燃腈纶/酚醛树脂纤维织物的制备及其性能[J]. 纺织学报, 2024, 45(04): 83-88.
[5] 方进, 张广知, 徐珍珍. 点击化学在功能纺织品制备中的应用研究进展[J]. 纺织学报, 2024, 45(03): 227-235.
[6] 李平, 朱平, 刘云. 壳聚糖基膨胀阻燃涤纶/棉混纺织物的制备及其性能[J]. 纺织学报, 2024, 45(02): 162-170.
[7] 肖昊, 孙辉, 于斌, 朱祥祥, 杨潇东. 壳聚糖-SiO2气凝胶/纤维素/聚丙烯复合水刺材料的制备及其吸附染料性能[J]. 纺织学报, 2024, 45(02): 179-188.
[8] 闫鹏翔, 陈富星, 刘红, 田明伟. 柔性力感知电子织物的制备及其人体运动监测系统构建[J]. 纺织学报, 2024, 45(02): 59-66.
[9] 范硕, 杨鹏, 曾锦豪, 宋潇迪, 龚昱丹, 肖遥. 抗熔滴型多元有机硅阻燃剂整理锦纶6织物的制备及其性能[J]. 纺织学报, 2024, 45(01): 152-160.
[10] 谷金峻, 魏春艳, 郭紫阳, 吕丽华, 白晋, 赵航慧妍. 棉秆皮微晶纤维素/改性氧化石墨烯阻燃纤维的制备及其性能[J]. 纺织学报, 2024, 45(01): 39-47.
[11] 魏建斐, 马国聪, 张安莹, 吴雨航, 崔晓晴, 王锐. 明胶基碳点的热解法制备及其阻燃与防伪应用[J]. 纺织学报, 2023, 44(12): 106-114.
[12] 陈顺, 钱坤, 梁付巍, 郭文文. 丁香酚基复合涂层阻燃疏水棉织物的制备及其性能[J]. 纺织学报, 2023, 44(12): 115-122.
[13] 张文琪, 李莉莉, 胡泽旭, 魏丽菲, 相恒学, 朱美芳. 基于均三嗪环结构的聚己内酰胺6复合树脂制备及其抗熔滴阻燃特性[J]. 纺织学报, 2023, 44(11): 1-8.
[14] 肖云超, 杨雅茹, 郭健鑫, 王童谣, 田强. 高温自交联抗熔滴阻燃涤纶织物的制备及其性能[J]. 纺织学报, 2023, 44(11): 151-159.
[15] 张广知, 杨甫生, 方进, 杨顺. 聚乳酸非织造布植酸/壳聚糖/硼酸一浴法阻燃整理[J]. 纺织学报, 2023, 44(10): 120-126.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!