纺织学报 ›› 2025, Vol. 46 ›› Issue (01): 87-94.doi: 10.13475/j.fzxb.20231002401

• 纺织工程 • 上一篇    下一篇

玄武岩/聚酰亚胺三维间隔机织物的参数化建模及高温环境传热数值模拟

李慧敏, 刘淑强(), 杜琳琳, 张曼, 吴改红   

  1. 太原理工大学 轻纺工程学院, 山西 晋中 030600
  • 收稿日期:2023-10-09 修回日期:2024-05-15 出版日期:2025-01-15 发布日期:2025-01-15
  • 通讯作者: 刘淑强(1981—),男,副教授,博士。主要研究方向为功能纺织品。E-mail: liushuqiang8866@126.com
  • 作者简介:李慧敏(1999—),女,硕士生。主要研究方向为功能面料的开发。
  • 基金资助:
    山西省科技成果转化引导专项项目(202104021301053);山西省基础研究计划项目(20210302123114);山西省基础研究计划项目(202203021211146);山西省重点研发计划项目(202302040201009);山西省艺术科学规划课题(22BG082);山西省高等学校大学生创新创业训练计划项目(20220125);山西省研究生实践创新项目(2023SJ084)

Parametric modeling of basalt/polyimide three-dimensional spacer woven fabric and numerical simulation of heat transfer in high temperature environment

LI Huimin, LIU Shuqiang(), DU Linlin, ZHANG Man, WU Gaihong   

  1. College of Textile Engineering, Taiyuan University of Technology, Jinzhong, Shanxi 030600, China
  • Received:2023-10-09 Revised:2024-05-15 Published:2025-01-15 Online:2025-01-15

摘要: 为突破实验条件的限制研究高温环境下三维间隔机织物的传热机制和传热过程,以玄武岩/聚酰亚胺三维间隔机织物为研究对象,对其三维间隔结构进行参数化建模,并确定控制方程以及边界条件。利用有限元分析方法对该织物进行高温环境下的传热过程数值模拟,通过实验对比验证模型有效性,探究了玄武岩/聚酰亚胺三维间隔机织物的间隔高度以及间隔跨距对其传热性能的影响。结果发现:相较于间隔跨距,间隔高度对三维间隔机织物传热性能的影响更大,传热平衡状态时织物背面域点探针温度相差11.4 ℃;且在三维间隔机织物内部,同一时刻下同一水平面上的间隔纱温度略低于空气域温度。

关键词: 三维间隔机织物, 玄武岩纤维, 聚酰亚胺纤维, 高性能纤维, 高温环境, 传热, 数值模拟

Abstract:

Objective Two difficulties exist when studying the thermal protection performance of three-dimensional (3-D) spacer woven fabrics, which are the low repeatbility of the test results obtained from self-built platforms by themselves, and the high cost of samples in terms of forming process complexity, long lead time, and the production cost. In order to solve the above two problems, numerical simulation was carried out to save manpower and material resources, break through the limitations of experimental conditions, and reduce the error caused by human factors.

Method Parametric modeling of basalt/polyimide 3-D spacer woven fabric was carried out, and then its heat transfer mechanism in high temperature environments was analyzed. The control equation and boundary conditions were determined, and finite element analysis software was utilized to numerically simulate the geometric model of 3-D spacer fabrics in high temperature environments, in order to predict the influence of spacer height and weft spacing on the heat transfer performance of basalt/polyimide 3-D spacer woven fabrics.

Results From the heat transfer diagram of 3-D spacer woven fabrics with different weft spacing at an external ambient temperature of 150 ℃, it was evident that as the weft spacering was increased, the temperature on the back of the fabric gradually was found to decrease when the heat balance was reached. When the weft spacing increases from 5 to 23 mm, the temperature of the point probe on the back of the fabric demonstrated a decrease from 42.63 ℃ to 42.40 ℃ at the heat transfer equilibrium state. Inside the 3-D spacer woven fabric, the spacer yarn temperature on the same horizontal plane was slightly lower than the air domain temperature, with a difference of about 0.22 ℃. From the heat transfer numerical simulation diagram of different spacer heights, it was seen that as the spacer height increases, the temperature on the back of the 3-D spacer woven fabric showed a gradual decrease when the heat transfer reached equilibrium. When the spacer height was increased from 0 to 12 mm, the temperature of the point probe on the back of the fabric showed a decrease from 51.31 ℃ to 39.91 ℃ at the heat transfer equilibrium state. Inside the 3-D spacer woven fabric, the spacer yarn temperature on the same horizontal plane was slightly lower than the air domain temperature, with a difference of about 0.15 ℃.

Conclusion Parametric modeling is carried out according to the geometric relationship of basalt/polyimide 3-D spacer woven fabric structural unit, the buckling and the interweaving of yarns. Based on the basic theory of heat transfer, a numerical model of heat transfer process of basalt/polyimide 3-D spacer woven fabric in high temperature environment is established. The finite element analysis is carried out to calculate the temperature field of basalt/polyimide 3-D spacer woven fabric in high temperature environment. The numerical simulation method is adopted to explore the influence of the weft spacing on the heat transfer performance. The spacer height is found an important parameter affecting the heat transfer performance of the 3-D spacer woven fabric. The 3-D spacer fabric, the spacer yarn temperature on the same horizontal plane at the same time is slightly lower than the air domain temperature.

Key words: three-dimensional spacer woven fabric, basalt fiber, polyimide fiber, high-performance fiber, high temperature environment, heat transfer, numerical simulation

中图分类号: 

  • TS105.1

图1

间隔跨距为5的玄武岩/聚酰亚胺三维间隔机织物的经向截面图"

图2

三维间隔机织物结构单元的几何关系"

图3

间隔跨距为5的玄武岩/聚酰亚胺三维间隔机织物结构单元的三维模型"

表1

材料的热物性参数"

材料 导热系数/
(W·m-1·K-1)
密度/
(kg·m-3)
比热/
(J·kg-1·K-1)
玄武岩纱线 1.33 805 940
聚酰亚胺纱线 1.56 602 470

图4

织物系统网格划分"

图5

传热达到平衡时不同间隔跨距织物模型温度变化曲线"

图6

间隔跨距为11的织物模型中织物和空气域的热通量分布云图"

图7

间隔高度对不同变量的影响"

图8

间隔高度为4 mm、间隔跨距为11的三维织物组织图"

图9

测试平台搭建示意图 注:a—实验支架;b—加热装置;c—织物;d—红外热成像仪;e—温度调节器;f—电脑。"

图10

织物背面温度曲线及模型与实物对比图"

[1] 戴佳欣, 李小辉. 热防护服隔热层材料的成型工艺研究[J]. 棉纺织技术, 2022, 50(1): 13-17.
DAI Jiaxin, LI Xiaohui. Study on the molding process of thermal protective clothing insulation material[J]. Cotton Textile Technology, 2022, 50 (1): 13-17.
[2] KRAUSE K, GRÜNEFELD P, BARTH L, 等. 基于三维间隔织物的隔热服传热模拟[J]. 国际纺织导报, 2021, 49(10): 27-28, 39.
KRAUSE K, GRÜNEFELD P, BARTH L, et al. Thermal insulation suit based on three-dimensional interval fabrics[J]. Melliand China, 2021, 49(10): 27-28, 39.
[3] 芮珂, 何佳臻. 三维间隔织物隔热性能的研究进展[J]. 现代纺织技术, 2023, 31(1): 259-268.
RUI Ke, HE Jiazhen. Research progress of thermal insulation properties of three-dimensional spacer fabrics[J]. Advanced Textile Technology, 2023, 31(1): 259-268.
[4] 黄冬梅, 何松. 空气层位置对消防战斗服隔热性能的影响[J]. 纺织学报, 2015, 36(10): 113-119.
HUANG Dongmei, HE Song. Effect of air layer position on thermal insulation performance of fire fighting clothing[J]. Journal of Textile Research, 2015, 36(10): 113-119.
[5] 王汉玉, 孙润军. 间隔织物增强复合材料的隔热性能研究[J]. 合成纤维, 2020, 49(12): 44-48.
WANG Hanyu, SUN Runjun. Study on thermal insulation properties of spacer fabric reinforced composites[J]. Synthetic Fiber in China, 2020, 49(12): 44-48.
[6] 王震, 姜亚明, 刘良森, 等. 常用高性能纱线弯曲刚度的测量和表征[J]. 纺织学报, 2014, 35(5): 30-33.
WANG Zhen, JIANG Yaming, LIU Liangsen, et al. Measurement and characterization of bending stiffness of commonly used high-performance yarns[J]. Journal of Textile Research, 2014, 35(5): 30-33.
[7] PIERCE R S, FALZON B G. Simulating resin infusion through textile reinforcement materials for the manufacture of complex composite structures[J]. Engineering, 2017, 3(5): 596-607.
[8] 郑振荣, 智伟, 韩晨晨, 等. 碳纤维织物在热流冲击下的热传递数值模拟[J]. 纺织学报, 2019, 40(6): 38-44.
ZHENG Zhenrong, ZHI Wei, HAN Chenchen, et al. Numerical simulation of heat transfer of carbon fiber fabric under heat flux impact[J]. Journal of Textile Research, 2019, 40(6): 38-44.
[9] AKPOYOMARE A I, OKEREKE M I, BINGLEY M S. Generation of virtual geometric domains for woven textile composites[J]. Composite Structures, 2020. DOI: 10.1016/j.compstruct.2019.111624.
[10] 张倩, 郑振荣, 赵晓明, 等. 高温下涂层织物传热过程的数值模拟[J]. 材料导报, 2020, 34(16): 16167-16171.
ZHANG Qian, ZHENG Zhenrong, ZHAO Xiaoming, et al. Numerical simulation of heat transfer process of coated fabric at high temperature[J]. Materials Reports, 2020, 34(16): 16167-16171.
[11] 吴茜. 织物热传递性能及其数值模拟[D]. 武汉: 武汉纺织大学, 2017:11,41-44.
WU Qian. Fabric heat transfer performance and its numerical simulation[D]. Wuhan: Wuhan Textile University, 2017:11,41-44.
[12] RAJ U, WANG F. A three-dimensional conjugate heat transfer model for thermal protective clothing[J]. International Journal of Thermal Sciences, 2018, 130: 28-46.
[13] SHEN H, XU Y, WANG F, et al. Numerical analysis of heat and flow transfer in porous textiles: influence of wind velocity and air permeability[J]. International Journal of Thermal Sciences, 2020. DOI:10.1016/j.ijthermalsci.2020.106432.
[14] 郑振荣, 张玉双, 王红梅, 等. 基于纱线交织结构的织物传热模拟方法[J]. 工程热物理学报, 2016, 37(9): 1918-1925.
ZHENG Zhenrong, ZHANG Yushuang, WANG Hongmei, et al. Fabric heat transfer simulation method based on yarn interwoven structure[J]. Journal of Engineering Thermophysics, 2016, 37(9): 1918-1925.
[15] 靖逸凡. 热防护用玄武岩/聚酰亚胺三维间隔织物的结构设计与性能研究[D]. 晋中: 太原理工大学, 2022:10-11.
JING Yifan. Structural design and properties of basalt / polyimide three-dimensional spacer fabric for thermal protection[D]. Jinzhong: Taiyuan University of Technology, 2022: 10-11.
[1] 李玲, 史倩倩, 田顺, 汪军. 输纤通道对称性对双喂入双分梳转杯纺气流场以及纱线特性的影响[J]. 纺织学报, 2025, 46(02): 69-77.
[2] 张定眺, 王倩茹, 邱芳, 李凤艳. 改进转杯纺输纤通道气流场及其纤维伸直形态的模拟[J]. 纺织学报, 2025, 46(02): 100-105.
[3] 宋凯莉, 郭明瑞, 高卫东. 装有气流导向装置的网格圈式集聚纺数值模拟与实验验证[J]. 纺织学报, 2025, 46(01): 34-41.
[4] 王珏, 晏石林, 李永静, 何龙飞, 谢翔宇, 孟晓旭. 剪切变形对各向异性织物主渗透率及浸润特性的影响[J]. 纺织学报, 2024, 45(12): 109-117.
[5] 奚传智, 王家源, 王泳智, 陈革, 裴泽光. 低能耗喷气涡流纺喷嘴气流场数值模拟与纺纱实验[J]. 纺织学报, 2024, 45(12): 206-214.
[6] 张定眺, 王倩茹, 邱芳, 李凤艳. 转杯纺分梳排杂区气流场的多维数值模拟对比[J]. 纺织学报, 2024, 45(10): 64-71.
[7] 田少萌, 张丽, 石浩轩, 徐阳. 基于ANSYS Workbench的高密机织滤料动态形变模拟与分析[J]. 纺织学报, 2024, 45(09): 63-69.
[8] 张琦, 左露娇, 屠佳妮, 聂美婷. 经编贾卡鞋面材料透气性的数值模拟[J]. 纺织学报, 2024, 45(09): 78-83.
[9] 岳旭, 王蕾, 孙丰鑫, 潘如如, 高卫东. 基于ABAQUS的平纹织物同面对向弯曲有限元模拟[J]. 纺织学报, 2024, 45(08): 165-172.
[10] 刘倩倩, 尤健明, 王琰, 孙成磊, 祝国成. 纤维弯曲对其集合体过滤特性影响的稳态数值分析[J]. 纺织学报, 2024, 45(07): 31-39.
[11] 谢红, 张林蔚, 沈云萍. 基于人体臂部的连续动态服装压力预测模型及准确性表征方法[J]. 纺织学报, 2024, 45(07): 150-158.
[12] 韩烨, 田苗, 蒋青昀, 苏云, 李俊. 织物-空气层-皮肤三维结构建模及其传热模拟[J]. 纺织学报, 2024, 45(02): 198-205.
[13] 王青, 梁高翔, 殷俊清, 盛晓超, 吕绪山, 党帅. 新型气流牵伸通道结构模型的构建与性能分析[J]. 纺织学报, 2023, 44(11): 52-60.
[14] 杨孟想, 刘让同, 李亮, 刘淑萍, 李淑静. 机织物的热传递与强热条件下热防护性能[J]. 纺织学报, 2023, 44(11): 74-82.
[15] 聂思萱, 尹虎, 聂亚东. 半导体制冷服设计方法研究进展[J]. 纺织学报, 2023, 44(10): 223-231.
Viewed
Full text
39
HTML PDF
Just accepted Online first Issue Just accepted Online first Issue
0 0 14 0 0 25

  From Others local
  Times 16 23
  Rate 41% 59%

Abstract
81
Just accepted Online first Issue
0 0 81
  From Others local
  Times 60 22
  Rate 73% 27%

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!