纺织学报 ›› 2024, Vol. 45 ›› Issue (02): 28-35.doi: 10.13475/j.fzxb.20231003901

• 纤维材料 • 上一篇    下一篇

高熔融指数聚乙烯母粒的制备及其红外透射熔喷材料的可纺性

魏义慧1, 张宇静1, 邓辉话2, 邓庆辉2, 陈浩锵2, 张须臻3, 于斌1, 朱斐超1,4,5()   

  1. 1.浙江理工大学 纺织科学与工程学院(国际丝绸学院), 浙江 杭州 310018
    2.广东干荣科技有限公司, 广东 佛山 528010
    3.浙江理工大学 材料科学与工程学院, 浙江 杭州 310018
    4.浙江省产业用纺织材料制备技术与研究重点实验室, 浙江 杭州 310018
    5.绍兴宜可纺织科技有限公司, 浙江 绍兴 311800
  • 收稿日期:2023-10-13 修回日期:2023-11-12 出版日期:2024-02-15 发布日期:2024-03-29
  • 通讯作者: 朱斐超(1988—),男,副教授,博士。主要研究方向为产业用非织造材料的制备与开发。E-mail:zhufeichao@zstu.edu.cn
  • 作者简介:魏义慧(1998—),女,硕士生。主要研究方向为阻燃熔喷非织造材料的制备。
  • 基金资助:
    国家自然科学基金项目(52003306);浙江省自然科学基金项目(LQ21E030013);佛山科技创新项目(2018IT100363)

Preparation of high melt flowing index polyethylene masterbatch and spinnability of infrared melt-blown nonwovens

WEI Yihui1, ZHANG Yujing1, DENG Huihua2, DENG Qinghui2, CHEN Haoqiang2, ZHANG Xuzhen3, YU Bin1, ZHU Feichao1,4,5()   

  1. 1. College of Textile Science and Engineering(International Institute of Silk), Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, China
    2. Guangdong Ganrong Technology Co., Ltd., Foshan, Guangdong 528010, China
    3. College of Material Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, China
    4. Key Laboratory of Industrial Textile Materials and Manufacturing Technology of Zhejiang Province, Hangzhou, Zhejiang 310018, China
    5. Shaoxing Eco Textile Technology Co., Ltd., Shaoxing, Zhejiang 311800, China
  • Received:2023-10-13 Revised:2023-11-12 Published:2024-02-15 Online:2024-03-29

摘要:

针对现有的聚乙烯(PE)原料熔体流动性能差、熔融指数低、熔喷成纤困难等问题,以纺丝级线性低密度PE为原料,采用低分子质量聚乙烯蜡(PEW)增塑和催化断链降解协同法,制备了多系列熔喷用高熔融指数聚乙烯(HMI-PE)母粒,分别对其熔体的流变性能、分子质量及其分布、结晶性能、热稳定性进行了研究,并进一步制备了PE熔喷材料(PE-MBs),对PE-MBs的表观形貌、力学性能、红外透射性能进行了表征和分析。研究结果表明:随着PEW质量分数的增加,HMI-PE的分子质量下降、熔融指数不断增大,呈现典型的剪切变稀行为,但HMI-PE母粒热稳定性无明显影响。当PEW质量分数大于30%时,HMI-PE母粒的可达200 g/(10 min)以上(230 ℃),呈现良好的熔喷可纺性和力学性能。PE-MBs的红外透过率超过92%,具有优异的中红外透过性能。

关键词: 聚乙烯, 熔喷材料, 非织造, 流变性能, 红外透过率, 可纺性

Abstract:

Objective The application of micro/nano ultrafine fiber aggregate materials with high transmittance and medium infrared performance in intelligent buildings, physical therapy and health energy is constantly expanding. Polyethylene (PE), as a typical high transmittance medium infrared material, has not yet received systematic research and applications in relation to its infrared transmittance ultrafine fiber materials. Melt-blown method can be used to prepare PE ultrafine fiber aggregates with high quality and efficiency. However, not much research has been witnessed on PE raw materials for melt-blown performance and melt-blown formation, and there is no PE melt-blown material with satisfactory performance in the market. This study prepared PE master batches with high melt index (HMI-PE) for melt spraying, further prepared PE melt spraying materials (PE-MBs), and studied their infrared transmittance.

Method Using spinning grade PE as raw material, high melt index PE master batches (HMI-PE) were prepared by reactive extrusion using a synergistic method of plasticizer (plasticizer, polyethylene wax(PEW)) and catalyst (initiator, DCP) chain breaking. The rheological properties, molecular weight and distribution, crystallization performance, and thermal stability of the HMI-PE master batches were investigated. Furthermore, PE melt-blown materials (PE-MBs) were prepared using SJ-25 micro melt blown testing mechanism, and the apparent morphology and mechanical of PE-MBs were studied. The infrared transmittance performance was characterized and analyzed.

Results Under the same temperature conditions, as the mass fraction of PEW increased, the melt index(MI) of HMI-PE master batches continuously increased. At different temperatures, the magnitude of the increase in MI of HMI-PE master batches increased with the increase of temperature. Under constant temperature conditions, the complex viscosity showed a decreasing trend with an increase in shear rate, resulting in a decrease in molecular weight and a wider distribution of molecular weight. The glass melting temperature and cold crystallization peak of HMI-PE master batches generally shifted to the left, and with the increase of PEW content, a melting peak with lower temperature and wider peak range would appear, without significant impact on thermal stability. When the mass fraction of PEW was greater than 30%, the HMI-PE masterbatches reached over 200 g/(10 min) (230 ℃), exhibiting great melt-blown spinnability. The fiber diameter of PE-MBs were distributed in an approximate normal pattern, and with the increase of melt index, the fiber diameter decreased to 7.72 μm. The longitudinal tensile strength of PE-MBs decreased with the increased of PEW content, while their flexibility and overall mechanical properties became better. Research had shown that the infrared transmittance was related to the thickness of the material and the thickness of the fibers. The thinner the material, the finer the fibers, and the higher the infrared transmittance.

Conclusion The synergistic method of plasticizer and catalytic chain breaking can be used to prepare high melt index polyethylene master batches, showing good melt-blown spinnability. PE melt-blown nonwoven materials have narrow absorption peaks in the mid infrared band, and their infrared transmittance can reach over 92%, making them an excellent infrared transparent material.

Key words: polyethylene, melt-blown, nonwoven, rheological property, infrared transmittance, spinnability

中图分类号: 

  • TS176

图1

HMI-PE母粒及其PE-MBs的制备流程"

图2

HMI-PE母粒反应性挤出制备机制"

图3

HMI-PE母粒的熔体流动性能"

图4

HMI-PE母粒的分子质量分布"

表1

HMI-PE母粒的分子质量分布参数"

试样 Mn Mw PDI
0# 385 672 529 068 1.131
1# 327 745 485 409 1.279
2# 319 682 436 272 1.481
3# 305 424 401 126 1.365
4# 224 655 377 645 1.681
5# 212 492 352 099 1.657

图5

PEW和HMI-PE母粒的DSC升温和降温曲线"

表2

PEW and HMI-PE母粒的DSC参数"

样品 冷结晶温
度/℃
冷结晶焓/
(J·g-1)
熔融温
度/℃
熔融焓/
(J·g-1)
结晶
度/%
PEW 90.0 51.2 99.7 14.5
0# 105.3 84.5 120.4 78.0 28.8
1# 106.4 65.2 121.9 76.4 24.7
2# 106.6 57.1 122.4 53.8 24.4
3# 105.4 47.8 119.7 49.4 23.3
4# 104.7 38.2 120.2 44.6 21.7
5# 104.1 23.1 119.1. 55.2 15.8

图6

HMI-PE母粒的TGA与DTG曲线"

表3

HMI-PE母粒的热失重参数"

样品 T5% T50% T95%
PEW 380.0 434.1 451.1
0# 419.9 448.8 460.7
1# 413.7 446.2 459.4
2# 408.8 443.4 456.9
3# 397.9 437.1 451.6
4# 392.6 433.1 450.8
5# 387.2 431.5 447.8

图7

不同熔融指数HMI-PE母粒制备获得的PE-MBs表观形貌照片及直径分布"

图8

PE-MBs的应力-应变曲线"

图9

不同织物的红外热成像图及红外透过率"

[1] YANG J J, ZHANG X F, ZHANG X, et al. Infrared adaptive materials: beyond the visible: bioinspired infrared adaptive materials[J]. Advanced Materials, 2021. DOI: 10.1002/adma.202170105.
[2] DAVID M, DISNAN D, LARDSCHNEIDER A, et al. Structure and mid-infrared optical properties of spin-coated polyethylene films developed for integrated photonics applications[J]. Optical Materials Express, 2022, 12(6): 2168-2180.
doi: 10.1364/OME.458667
[3] SHEN Y L, LIU Z Y, JIANG G J, et al. Fabrication of light-weight ultrahigh molecular weight polyethylene films with hybrid porous structure and the thermal insulation properties[J]. Journal of Applied Polymer Science, 2022. DOI: 10.1002/app.52403.
[4] TONG J K, HUNG X P, BORISKINA S V, et al. Infrared-transparent visible-opaque fabrics for wearable personal thermal management[J]. ACS Photonics, 2015, 2(6): 769-778.
doi: 10.1021/acsphotonics.5b00140
[5] PO C H, ALEX Y S, PETER B C, et al. Radiative human body cooling by nanoporous polyethylene textile[J]. Science, 2016, 353(6303): 1019-1023.
doi: 10.1126/science.aaf5471
[6] PENG Y C, CHEN J, SONG Y A, et al. Nanoporous polyethylene microfibres for large-scale radiative cooling fabric[J]. Nature Sustainability, 2018, 1(2): 105-112.
doi: 10.1038/s41893-018-0023-2
[7] KE Y, WANG F, XU P, et al. On the use of a novel nanoporous polyethylene (nanoPE) passive cooling material for personal thermal comfort management under uniform indoor environments[J]. Building and Environment, 2018, 145: 85-95.
doi: 10.1016/j.buildenv.2018.09.021
[8] HSU P C, LIU C, SONG A Y, et al. A dual-mode textile for human body radiative heating and cooling[J]. Science Advances, 2017. DOI: 10.1126/sciadv.1700895.
[9] CAI L L, SONG A Y, LI W, et al. Spectrally selective nanocomposite textile for outdoor personal cooling[J]. Advanced Materials, 2018. DOI: 10.1002/adma.201802152.
[10] CAI L, SONG A Y, WU P, et al. Warming up human body by nanoporous metallized polyethylene textile[J]. Nature Communications, 2017, 8(1): 496.
doi: 10.1038/s41467-017-00614-4 pmid: 28928427
[11] CATRYSSE P B, SONG A Y, FAN S. Photonic structure textile design for localized thermal cooling based on a fiber blending scheme[J]. ACS Photonics, 2016, 3(12): 2420-2426.
doi: 10.1021/acsphotonics.6b00644
[12] CAI L, PENG Y, XU J, et al. Temperature regulation in colored infrared-transparent polyethylene textiles[J]. Joule, 2019, 3(6): 1478-1486.
doi: 10.1016/j.joule.2019.03.015
[13] DRABEK J, ZATLOUKAL M. Meltblown technology for production of polymeric microfibers/nanofibers: a review[J]. Physics of Fluids, 2019. DOI: 10.1063/1.5116336.
[14] HIREMATH N, BHAT G. Melt blown polymeric nanofibers for medical applications: an overview[J]. Nanoscience and Technology, 2015, 2(1): 1-9.
[15] YALCIN Y, GAJANAN S B. Structure and mechanical properties of polyethylene melt blown nonwovens[J]. International Journal of Clothing Science and Technology, 2016, 28(6): 780-793.
doi: 10.1108/IJCST-09-2015-0099
[16] YALCIN Y, GAJANAN S B. Porosity and barrier properties of polyethylene meltblown nonwovens[J]. The Journal of The Textile Institute, 2017, 108(6): 1035-1040.
doi: 10.1080/00405000.2016.1218109
[17] XU Y, ZHANG X, HAO X, et al. Micro/nanofibrous nonwovens with high filtration performance and radiative heat dissipation property for personal protective face mask[J]. Chemical Engineering Journal, 2021. DOI: 10.1016/j.cej.2021.130175.
[18] LIU X Y, LIANG B, LONG J P. Preparation of novel thick sheet graphene and its effect on the properties of polyolefins with different crystallinities[J]. Polymer Bulletin, 2021, 79(8): 5955-5974.
doi: 10.1007/s00289-021-03791-x
[19] GAHLEITNER M, WANG J, PRADES F, et al. Gelation and crystallization phenomena in polyethylene plastomers modified with waxes[J]. Polymers, 2021, 13(13): 2147.
doi: 10.3390/polym13132147
[20] MORICI E, DL B A, ARRIGO R, et al. Double bond-functionalized POSS: dispersion and crosslinking in polyethylene-based hybrid obtained by reactive proce-ssing[J]. Polymer Bulletin, 2016, 73: 3385-3400.
doi: 10.1007/s00289-016-1662-y
[21] BAKSHI A K, GHOSH A K. Processability and physico-mechanical properties of ultrahigh-molecular-weight polyethylene using low-molecular-weight olefin wax[J]. Polymer Engineering & Science, 2022, 62(7): 2335-2350.
[22] ANDREEV M, NICHOLSOND, KOTULA A, et al. Rheology of crystallizing LLDPE.[J]. Journal of Rheology, 2020, 64(6): 1379-1389.
doi: 10.1122/8.0000110
[23] SEPIDEH B, MARYAM M, MASOUD H, et al. Low molecular weight paraffin, as phase change material, in physical and micro-structural changes of novel LLDPE/LDPE/paraffin composite pellets and films[J]. Iranian Polymer Journal, 2017, 26(11): 885-893.
doi: 10.1007/s13726-017-0574-5
[24] GUMEDE, THANDI P, LUYT, et al. Plasticization and cocrystallization in LLDPE/wax blends[J]. Journal of Polymer Science, Part B. Polymer Physics, 2016, 54(15): 1469-1482.
doi: 10.1002/polb.v54.15
[25] MOSOABISANE M F T, LUYT A S, VAN S C. Comparative experimental and modelling study of the thermal and thermo-mechanical properties of LLDPE/wax blends[J]. Journal of Polymer Research, 2022, 29(7): 296.
doi: 10.1007/s10965-022-03136-w
[26] SALEM S M, BEHBEHANI M H, HAZZA A J, et al. Study of the degradation profile for virgin linear low-density polyethylene (LLDPE) and polyole-fin (PO) plastic waste blends[J]. Journal of Material Cycles and Waste Management, 2019, 21(5): 1106-1122.
doi: 10.1007/s10163-019-00868-8
[27] 张宇静, 陈连节, 张思东, 等. 高熔融指数聚乳酸母粒的制备及其熔喷材料的可纺性[J]. 纺织学报, 2023, 44(2): 55-62.
ZHANG Yujing, CHEN Lianjie, ZHANG Sidong, et al. Preparation of high melt index polylactic acid masterbatch andspinnability of its meltblown mate-rials[J]. Journal of Textile Research, 2023, 44(2): 55-62.
[1] 翟倩, 张恒, 赵珂, 朱文辉, 甄琪, 崔景强. 仿生竹节纤维基加湿材料的叠层设计及其导湿快干性能[J]. 纺织学报, 2024, 45(02): 1-10.
[2] 肖昊, 孙辉, 于斌, 朱祥祥, 杨潇东. 壳聚糖-SiO2气凝胶/纤维素/聚丙烯复合水刺材料的制备及其吸附染料性能[J]. 纺织学报, 2024, 45(02): 179-188.
[3] 方春月, 刘紫璇, 贾立霞, 阎若思. 双等离子体改性超高分子量聚乙烯复合材料的弹道响应[J]. 纺织学报, 2024, 45(02): 77-84.
[4] 刘金鑫, 周雨萱, 朱柏融, 吴海波, 张克勤. 热黏合聚乙烯/聚丙烯双组分纺黏非织造材料性能及其过滤机制[J]. 纺织学报, 2024, 45(01): 23-29.
[5] 王镕琛, 张恒, 翟倩, 刘瑞焱, 黄鹏宇, 李霞, 甄琪, 崔景强. 聚乳酸超细纤维敷料的熔喷成形工艺及其快速导液特性[J]. 纺织学报, 2024, 45(01): 30-38.
[6] 刘亚, 赵晨, 庄旭品, 赵义侠, 程博闻. 基于Polyflow模拟的茂金属聚乙烯纺黏长丝制备及其性能[J]. 纺织学报, 2023, 44(12): 1-9.
[7] 孟娜, 王先锋, 李召岭, 俞建勇, 丁彬. 熔喷非织造布的驻极技术研究进展[J]. 纺织学报, 2023, 44(12): 225-232.
[8] 刘骏韬, 孙婷, 涂虎, 胡敏, 张如全, 孙雷, 罗霞, 纪华. 全棉水刺非织造布的等离子体冷堆脱脂漂白工艺响应面法优化[J]. 纺织学报, 2023, 44(11): 132-141.
[9] 李修田, 宋伟广, 张丽平, 杜长森, 付少海. 聚酰胺原液着色母粒的制备及其性能[J]. 纺织学报, 2023, 44(11): 45-51.
[10] 张广知, 杨甫生, 方进, 杨顺. 聚乳酸非织造布植酸/壳聚糖/硼酸一浴法阻燃整理[J]. 纺织学报, 2023, 44(10): 120-126.
[11] 姚双双, 付少举, 张佩华, 孙秀丽. 再生丝素蛋白/聚乙烯醇共混取向纳米纤维膜的制备与性能[J]. 纺织学报, 2023, 44(09): 11-19.
[12] 钱耀威, 殷连博, 李家炜, 杨晓明, 李耀邦, 戚栋明. 聚乙烯基膦酸/多乙烯多胺层层自组装阻燃棉织物的制备及其性能[J]. 纺织学报, 2023, 44(09): 144-152.
[13] 徐瑞东, 王航, 曲丽君, 田明伟. 聚乳酸非织造基材触摸传感电子织物制备及其性能[J]. 纺织学报, 2023, 44(09): 161-167.
[14] 汪泽幸, 周衡书, 杨敏, 谭冬宜. 不同循环加载路径下黄麻织物/聚乙烯复合材料的变形特性[J]. 纺织学报, 2023, 44(09): 99-107.
[15] 张杏, 叶伟, 龙啸云, 曹海建, 孙启龙, 马岩, 王征. 超高分子量聚乙烯纤维织物/热塑性聚氨酯复合材料的界面黏结性能[J]. 纺织学报, 2023, 44(08): 143-150.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!