纺织学报 ›› 2024, Vol. 45 ›› Issue (02): 28-35.doi: 10.13475/j.fzxb.20231003901
魏义慧1, 张宇静1, 邓辉话2, 邓庆辉2, 陈浩锵2, 张须臻3, 于斌1, 朱斐超1,4,5()
WEI Yihui1, ZHANG Yujing1, DENG Huihua2, DENG Qinghui2, CHEN Haoqiang2, ZHANG Xuzhen3, YU Bin1, ZHU Feichao1,4,5()
摘要:
针对现有的聚乙烯(PE)原料熔体流动性能差、熔融指数低、熔喷成纤困难等问题,以纺丝级线性低密度PE为原料,采用低分子质量聚乙烯蜡(PEW)增塑和催化断链降解协同法,制备了多系列熔喷用高熔融指数聚乙烯(HMI-PE)母粒,分别对其熔体的流变性能、分子质量及其分布、结晶性能、热稳定性进行了研究,并进一步制备了PE熔喷材料(PE-MBs),对PE-MBs的表观形貌、力学性能、红外透射性能进行了表征和分析。研究结果表明:随着PEW质量分数的增加,HMI-PE的分子质量下降、熔融指数不断增大,呈现典型的剪切变稀行为,但HMI-PE母粒热稳定性无明显影响。当PEW质量分数大于30%时,HMI-PE母粒的可达200 g/(10 min)以上(230 ℃),呈现良好的熔喷可纺性和力学性能。PE-MBs的红外透过率超过92%,具有优异的中红外透过性能。
中图分类号:
[1] | YANG J J, ZHANG X F, ZHANG X, et al. Infrared adaptive materials: beyond the visible: bioinspired infrared adaptive materials[J]. Advanced Materials, 2021. DOI: 10.1002/adma.202170105. |
[2] |
DAVID M, DISNAN D, LARDSCHNEIDER A, et al. Structure and mid-infrared optical properties of spin-coated polyethylene films developed for integrated photonics applications[J]. Optical Materials Express, 2022, 12(6): 2168-2180.
doi: 10.1364/OME.458667 |
[3] | SHEN Y L, LIU Z Y, JIANG G J, et al. Fabrication of light-weight ultrahigh molecular weight polyethylene films with hybrid porous structure and the thermal insulation properties[J]. Journal of Applied Polymer Science, 2022. DOI: 10.1002/app.52403. |
[4] |
TONG J K, HUNG X P, BORISKINA S V, et al. Infrared-transparent visible-opaque fabrics for wearable personal thermal management[J]. ACS Photonics, 2015, 2(6): 769-778.
doi: 10.1021/acsphotonics.5b00140 |
[5] |
PO C H, ALEX Y S, PETER B C, et al. Radiative human body cooling by nanoporous polyethylene textile[J]. Science, 2016, 353(6303): 1019-1023.
doi: 10.1126/science.aaf5471 |
[6] |
PENG Y C, CHEN J, SONG Y A, et al. Nanoporous polyethylene microfibres for large-scale radiative cooling fabric[J]. Nature Sustainability, 2018, 1(2): 105-112.
doi: 10.1038/s41893-018-0023-2 |
[7] |
KE Y, WANG F, XU P, et al. On the use of a novel nanoporous polyethylene (nanoPE) passive cooling material for personal thermal comfort management under uniform indoor environments[J]. Building and Environment, 2018, 145: 85-95.
doi: 10.1016/j.buildenv.2018.09.021 |
[8] | HSU P C, LIU C, SONG A Y, et al. A dual-mode textile for human body radiative heating and cooling[J]. Science Advances, 2017. DOI: 10.1126/sciadv.1700895. |
[9] | CAI L L, SONG A Y, LI W, et al. Spectrally selective nanocomposite textile for outdoor personal cooling[J]. Advanced Materials, 2018. DOI: 10.1002/adma.201802152. |
[10] |
CAI L, SONG A Y, WU P, et al. Warming up human body by nanoporous metallized polyethylene textile[J]. Nature Communications, 2017, 8(1): 496.
doi: 10.1038/s41467-017-00614-4 pmid: 28928427 |
[11] |
CATRYSSE P B, SONG A Y, FAN S. Photonic structure textile design for localized thermal cooling based on a fiber blending scheme[J]. ACS Photonics, 2016, 3(12): 2420-2426.
doi: 10.1021/acsphotonics.6b00644 |
[12] |
CAI L, PENG Y, XU J, et al. Temperature regulation in colored infrared-transparent polyethylene textiles[J]. Joule, 2019, 3(6): 1478-1486.
doi: 10.1016/j.joule.2019.03.015 |
[13] | DRABEK J, ZATLOUKAL M. Meltblown technology for production of polymeric microfibers/nanofibers: a review[J]. Physics of Fluids, 2019. DOI: 10.1063/1.5116336. |
[14] | HIREMATH N, BHAT G. Melt blown polymeric nanofibers for medical applications: an overview[J]. Nanoscience and Technology, 2015, 2(1): 1-9. |
[15] |
YALCIN Y, GAJANAN S B. Structure and mechanical properties of polyethylene melt blown nonwovens[J]. International Journal of Clothing Science and Technology, 2016, 28(6): 780-793.
doi: 10.1108/IJCST-09-2015-0099 |
[16] |
YALCIN Y, GAJANAN S B. Porosity and barrier properties of polyethylene meltblown nonwovens[J]. The Journal of The Textile Institute, 2017, 108(6): 1035-1040.
doi: 10.1080/00405000.2016.1218109 |
[17] | XU Y, ZHANG X, HAO X, et al. Micro/nanofibrous nonwovens with high filtration performance and radiative heat dissipation property for personal protective face mask[J]. Chemical Engineering Journal, 2021. DOI: 10.1016/j.cej.2021.130175. |
[18] |
LIU X Y, LIANG B, LONG J P. Preparation of novel thick sheet graphene and its effect on the properties of polyolefins with different crystallinities[J]. Polymer Bulletin, 2021, 79(8): 5955-5974.
doi: 10.1007/s00289-021-03791-x |
[19] |
GAHLEITNER M, WANG J, PRADES F, et al. Gelation and crystallization phenomena in polyethylene plastomers modified with waxes[J]. Polymers, 2021, 13(13): 2147.
doi: 10.3390/polym13132147 |
[20] |
MORICI E, DL B A, ARRIGO R, et al. Double bond-functionalized POSS: dispersion and crosslinking in polyethylene-based hybrid obtained by reactive proce-ssing[J]. Polymer Bulletin, 2016, 73: 3385-3400.
doi: 10.1007/s00289-016-1662-y |
[21] | BAKSHI A K, GHOSH A K. Processability and physico-mechanical properties of ultrahigh-molecular-weight polyethylene using low-molecular-weight olefin wax[J]. Polymer Engineering & Science, 2022, 62(7): 2335-2350. |
[22] |
ANDREEV M, NICHOLSOND, KOTULA A, et al. Rheology of crystallizing LLDPE.[J]. Journal of Rheology, 2020, 64(6): 1379-1389.
doi: 10.1122/8.0000110 |
[23] |
SEPIDEH B, MARYAM M, MASOUD H, et al. Low molecular weight paraffin, as phase change material, in physical and micro-structural changes of novel LLDPE/LDPE/paraffin composite pellets and films[J]. Iranian Polymer Journal, 2017, 26(11): 885-893.
doi: 10.1007/s13726-017-0574-5 |
[24] |
GUMEDE, THANDI P, LUYT, et al. Plasticization and cocrystallization in LLDPE/wax blends[J]. Journal of Polymer Science, Part B. Polymer Physics, 2016, 54(15): 1469-1482.
doi: 10.1002/polb.v54.15 |
[25] |
MOSOABISANE M F T, LUYT A S, VAN S C. Comparative experimental and modelling study of the thermal and thermo-mechanical properties of LLDPE/wax blends[J]. Journal of Polymer Research, 2022, 29(7): 296.
doi: 10.1007/s10965-022-03136-w |
[26] |
SALEM S M, BEHBEHANI M H, HAZZA A J, et al. Study of the degradation profile for virgin linear low-density polyethylene (LLDPE) and polyole-fin (PO) plastic waste blends[J]. Journal of Material Cycles and Waste Management, 2019, 21(5): 1106-1122.
doi: 10.1007/s10163-019-00868-8 |
[27] | 张宇静, 陈连节, 张思东, 等. 高熔融指数聚乳酸母粒的制备及其熔喷材料的可纺性[J]. 纺织学报, 2023, 44(2): 55-62. |
ZHANG Yujing, CHEN Lianjie, ZHANG Sidong, et al. Preparation of high melt index polylactic acid masterbatch andspinnability of its meltblown mate-rials[J]. Journal of Textile Research, 2023, 44(2): 55-62. |
[1] | 翟倩, 张恒, 赵珂, 朱文辉, 甄琪, 崔景强. 仿生竹节纤维基加湿材料的叠层设计及其导湿快干性能[J]. 纺织学报, 2024, 45(02): 1-10. |
[2] | 肖昊, 孙辉, 于斌, 朱祥祥, 杨潇东. 壳聚糖-SiO2气凝胶/纤维素/聚丙烯复合水刺材料的制备及其吸附染料性能[J]. 纺织学报, 2024, 45(02): 179-188. |
[3] | 方春月, 刘紫璇, 贾立霞, 阎若思. 双等离子体改性超高分子量聚乙烯复合材料的弹道响应[J]. 纺织学报, 2024, 45(02): 77-84. |
[4] | 刘金鑫, 周雨萱, 朱柏融, 吴海波, 张克勤. 热黏合聚乙烯/聚丙烯双组分纺黏非织造材料性能及其过滤机制[J]. 纺织学报, 2024, 45(01): 23-29. |
[5] | 王镕琛, 张恒, 翟倩, 刘瑞焱, 黄鹏宇, 李霞, 甄琪, 崔景强. 聚乳酸超细纤维敷料的熔喷成形工艺及其快速导液特性[J]. 纺织学报, 2024, 45(01): 30-38. |
[6] | 刘亚, 赵晨, 庄旭品, 赵义侠, 程博闻. 基于Polyflow模拟的茂金属聚乙烯纺黏长丝制备及其性能[J]. 纺织学报, 2023, 44(12): 1-9. |
[7] | 孟娜, 王先锋, 李召岭, 俞建勇, 丁彬. 熔喷非织造布的驻极技术研究进展[J]. 纺织学报, 2023, 44(12): 225-232. |
[8] | 刘骏韬, 孙婷, 涂虎, 胡敏, 张如全, 孙雷, 罗霞, 纪华. 全棉水刺非织造布的等离子体冷堆脱脂漂白工艺响应面法优化[J]. 纺织学报, 2023, 44(11): 132-141. |
[9] | 李修田, 宋伟广, 张丽平, 杜长森, 付少海. 聚酰胺原液着色母粒的制备及其性能[J]. 纺织学报, 2023, 44(11): 45-51. |
[10] | 张广知, 杨甫生, 方进, 杨顺. 聚乳酸非织造布植酸/壳聚糖/硼酸一浴法阻燃整理[J]. 纺织学报, 2023, 44(10): 120-126. |
[11] | 姚双双, 付少举, 张佩华, 孙秀丽. 再生丝素蛋白/聚乙烯醇共混取向纳米纤维膜的制备与性能[J]. 纺织学报, 2023, 44(09): 11-19. |
[12] | 钱耀威, 殷连博, 李家炜, 杨晓明, 李耀邦, 戚栋明. 聚乙烯基膦酸/多乙烯多胺层层自组装阻燃棉织物的制备及其性能[J]. 纺织学报, 2023, 44(09): 144-152. |
[13] | 徐瑞东, 王航, 曲丽君, 田明伟. 聚乳酸非织造基材触摸传感电子织物制备及其性能[J]. 纺织学报, 2023, 44(09): 161-167. |
[14] | 汪泽幸, 周衡书, 杨敏, 谭冬宜. 不同循环加载路径下黄麻织物/聚乙烯复合材料的变形特性[J]. 纺织学报, 2023, 44(09): 99-107. |
[15] | 张杏, 叶伟, 龙啸云, 曹海建, 孙启龙, 马岩, 王征. 超高分子量聚乙烯纤维织物/热塑性聚氨酯复合材料的界面黏结性能[J]. 纺织学报, 2023, 44(08): 143-150. |
|