纺织学报 ›› 2024, Vol. 45 ›› Issue (10): 23-30.doi: 10.13475/j.fzxb.20231004001

• 纤维材料 • 上一篇    下一篇

聚吡咯共轭结构对碳纤维增强树脂基复合材料热循环稳定性能的影响

姜梦敏1, 王一璠1, 金欣1(), 王闻宇2, 肖长发1,3   

  1. 1.天津工业大学 材料科学与工程学院, 天津 300387
    2.天津工业大学 纺织科学与工程学院, 天津 300387
    3.上海工程技术大学, 上海 201620
  • 收稿日期:2023-10-13 修回日期:2024-05-23 出版日期:2024-10-15 发布日期:2024-10-22
  • 通讯作者: 金欣(1972—),女,教授,博士。主要研究方向为功能材料结构与性能。E-mail:jinxin29@126.com
  • 作者简介:姜梦敏(1994—),女,硕士。主要研究方向为导电聚合物材料设计与功能。
  • 基金资助:
    国家自然科学基金项目(51573136)

Effect of pyrrole-conjugated structure on the thermal cycle stability of carbon fiber reinforced resin-based composites

JIANG Mengmin1, WANG Yifan1, JIN Xin1(), WANG Wenyu2, XIAO Changfa1,3   

  1. 1. School of Materials Science and Engineering, Tiangong University, Tianjin 300387, China
    2. School of Textile Science and Engineering, Tiangong University, Tianjin 300387, China
    3. Shanghai University of Engineering Science, Shanghai 201620, China
  • Received:2023-10-13 Revised:2024-05-23 Published:2024-10-15 Online:2024-10-22

摘要:

为解决碳纤维增强树脂基复合材料(CFRPs)存在的碳纤维与基体间界面黏结性较弱和在热循环过程中因热膨胀系数不匹配而产生界面破坏的问题,通过低温聚合得到含有较多共轭结构的聚吡咯(PPy)对预处理后碳纤维(CF)进行表面改性,分别在0、30、60℃下制得碳纤维/聚吡咯复合纤维(PPy/CF),并研究了不同聚合温度下制备的CFRPs的界面结合性能、热膨胀性能和热循环稳定性能。结果表明:PPy/CF-0纤维的表面粗糙度与CF相比增加了2.09倍,这有利于树脂锚定在碳纤维表面,从而提高界面结合性能;并且PPy/CF-0纤维表面的聚吡咯层具有较完善的共轭结构,整体表现为负热膨胀系数,使得复合材料的层间剪切强度和界面剪切强度分别达到了CF的1.56倍和1.70倍;此外还使得CFRPs的热循环稳定性有了较明显的提升,经100次热循环实验后,其剪切强度仍能保持在初始数值的70%以上。

关键词: 碳纤维增强树脂基复合材料, 聚吡咯, 界面结合性能, 负热膨胀系数, 热循环稳定性, 聚合温度

Abstract:

Objective Carbon fiber(CF) reinforced resin matrix composites (CFRPs) have attracted much research attention in due to their good overall performance. However, CFRPs suffer from the problems of weak interfacial bonding between carbon fibers and matrix, and the mismatch of thermal expansion coefficients of the two phase materials brings about interfacial damage during thermal cycling. Existing interfacial modification techniques are difficult to solve the above two problems, and therefore a new solution is proposed in this paper.

Method Optimization of interfacial properties of composites was carried out based on structural adjustment of polypyrrole (PPy) to achieve surface modification by polymerizing a layer of PPy on carbon fiber. The PPy layer with more conjugated structure was obtained by adjusting different polymerization temperature. The interfacial bonding property, thermal expansion property and thermal cycling stability of CFRPs prepared under different polymerization conditions were studied.

Results The results showed that the surface roughness of PPy/CF-0 fibers polymerized at 0 ℃ was higher than that of CF by a factor of 2.09, which was conducive to the anchoring of the epoxy resin on the surface of carbon fibers. Moreover, the PPy on the surface of PPy/CF-0 fibers showed a higher α-α conjugate structure, which led to the negative coefficient of thermal expansion of the composites, and increased the interlayer shear strength and interfacial shear strength of the composites by a maximum of 60 MPa and 47.5 MPa, respectively. The PPy/CF-0 fiber composites also demonstrated excellent thermal cycling stability, and the shear strength was still maintained at more than 70% of the initial value after 100 thermal cycling tests.

Conclusion Compared with unmodified CF, the interlaminar shear strength(ILSS) and interfacial shear strength(IFSS) of PPy/CF-0 fiber-reinforced composites modified by PPy coating reached 88.9 MPa and 65.4 MPa, respectively, which were 1.56 and 1.70 times higher compared with CF, and the shear strength was maintained at more than 70% of the initial value after thermal cycling up to 100 times. The polymerization temperature has a significant effect on the morphology, structure and properties of the PPy layer. Through AFM observation and FT-IR spectra analysis, the surface of PPy/CF-0 fibers prepared by low-temperature polymerization at 0 ℃ has a large roughness and the content of α-α conjugated structure of PPy is as high as 74%. The PPy/CF-0 fiber and its reinforced composites showed negative coefficient of thermal expansion. The PPy-modification technology provides a new way of thinking for the design of composite materials by changing the surface roughness and negative thermal expansion coefficient, thus effectively enhancing the interfacial bonding performance and improving the thermal cycling stability of fiber-reinforced composites.

Key words: carbon fiber reinforced resin matrix composite, polypyrrole, interfacial bonding property, negative thermal expansion coefficient, thermal cycling stability, polymerization temperature

中图分类号: 

  • TS101

图1

不同条件下复合纤维的扫描电镜照片"

图2

不同条件下复合纤维的原子力显微镜照片"

图3

不同纤维的热膨胀系数与温度的关系"

图4

单向纤维复合材料的热膨胀系数与温度的关系"

表1

单向纤维复合材料的热膨胀系数"

材料 α90/(10-4-1) α150/(10-4-1)
CF 6.960 9.410
PPy/CF-0 -1.870 -3.760
PPy/CF-30 -0.118 -1.210
PPy/CF-60 11.900 3.750

图5

阻尼因子随沉积温度变化的DMA图"

图6

紫外-可见吸收光谱 注: a为原亚甲基蓝溶液; b为被PPy/CF-60吸收的亚甲基蓝溶液; c为被PPy/CF-30吸收的亚甲基蓝溶液; d为被PPy/CF-0吸收的亚甲基蓝溶液。"

图7

不同聚合温度下聚吡咯的红外谱图"

表2

不同处理条件下的α-α含量"

聚合温度/℃ α-α含量/% 聚合温度/℃ α-α含量/%
-15 68 30 69
0 74 45 63
15 69 60 52

图8

复合材料的热循环性能"

[1] 杨智勇, 张东, 顾春辉, 等. 国外空天往返飞行器用先进树脂基复合材料研究与应用进展[J]. 复合材料学报, 2022, 39(7): 3029-3043.
YANG Zhiyong, ZHANG Dong, GU Chunhui, et al. Research and application of advanced resin matrix composites for aerospace shuttle vehicles abroad[J]. Acta Materiae Compositae Sinica, 2022, 39(7): 3029-3043.
[2] CHEN Q, PENG Q, ZHAO X, et al. Grafting carbon nanotubes densely on carbon fibers by poly(propylene imine) for interfacial enhancement of carbon fiber composites[J]. Carbon, 2019, 158: 704-710.
[3] FANG H, BAI Y, LIU W Q, et al. Connections and structural applications of fibre reinforced polymer composites for civil infrastructure in aggressive environments[J]. Composites Part B: Engineering, 2019, 164: 129-143.
[4] 林乐乐. 炭纤维表面特性对复合材料表面性能的影响研究[J]. 炭素技术, 2020, 39(4): 57-61.
LIN Lele. Effect of carbon fiber surface properties on the surface properties of composites[J]. Carbon Techniques, 2020, 39(4): 57-61.
[5] MUND M, LIPPKY K, BLASS D, et al. Influence of production based surface topography and release agent amount on bonding properties of CFRP[J]. Composite Structures, 2019, 216(2): 104-111.
[6] SHARMA M, GAO S, MAEDER E, et al. Carbon fiber surfaces and composite interphases[J]. Compos Sci Technol, 2014, 102: 35-50.
[7] XIAO J, ZHANG X, ZHAO Z, et al. Rapid and continuous atmospheric plasma surface modification of PAN-based carbon fibers[J]. ACS Omega, 2022, 7(13): 10963-10969.
doi: 10.1021/acsomega.1c06818 pmid: 35415352
[8] ZHANG Z, WILSON J L, KITT B R, et al. Effects of oxygen plasma treatments on surface functional groups and shear strength of carbon fiber composites[J]. ACS Applied Polymer Materials, 2021, 3(2): 986-995.
[9] 张静静, 梁森, 汤超. 微波对碳纤维的改性作用及其对电子束固化CFRP界面性能的影响[J]. 复合材料学报, 2023, 40(7): 3900-3911.
ZHANG Jingjing, LIANG Sen, TANG Chao. Modification of carbon fiber by microwave and its effect on interfacial properties of electron beam cured CFRP[J]. Acta Materiae Compositae Sinica, 2023, 40(7): 3900-3911.
[10] KRISHNAMURTHY A, TAO R, SENSE E, et al. Multiscale polymer dynamics in hierarchical carbon nanotube grafted glass fiber reinforced composites[J]. ACS Appl Polym Mater, 2019(1): 1905-1917.
[11] 冯俊. 碳纤维的改性及其界面性能[J]. 合成树脂及塑料, 2019, 36(6): 27-30.
FENG Jun. Modification and interface properties of CF[J]. China Synthetic Resin and Plastics, 2019, 36(6): 27-30.
[12] KWON Y J, KIM Y, JEON H, et al. Graphene/carbon nanotube hybrid as a multi-functional interfacial reinforcement for carbon fiber-reinforced composites[J]. Composites Part B, 2017, 122: 23-30.
[13] CAI J Y, LI Q, EASTON C D, et al. Surface modification of carbon fibres with ammonium cerium nitrate for interfacial shear strength enhancement[J]. Composites Part B: Engineering, 2022, 246: 1-8.
[14] YUAN J M, FENG Y R, WU Z J, et al. A carbon fiber network/polypropylene composite with a low thermal expansion coefficient and high stiffnessn[J]. New Carbon Materials, 2017, 32(3): 271-276.
[15] HAN Y C, CHEN P S, XIA Y F, et al. Electrodeposition of polypyrrole on He plasma etched carbon nanotube films for electrodes of flexible all-solid-state supercapacitor[J]. Solid State Electr, 2019, 23: 553-562.
[16] AKSHAYA K B, VARGHESE A, NIDHIN M, et al. Amorphous Ru-Pi nanoclusters coated on polypyrrole modified carbon fiber paper for non-enzymatic electrochemical determination of cholesterol[J]. Electrochem Soc, 2019, 166: 1016-B1027.
[17] CHEN H Y, CAI X F, BI X S. The influence of polypyrrole coating on the mechanical properties of carbon fiber-filled polytetrafluoroethylene composite[J]. Journal of Thermoplastic Composite Materials, 2012, 27(8): 1065-1073.
[18] 洪诗婷. T300碳纤维的表面处理及力学性能研究[D]. 上海: 东华大学, 2020: 11-16.
HONG Shiting. Surface treatment and mechanical properties of T300 carbon fiber[D]. Shanghai: Donghua University, 2020: 11-16.
[19] YAO L, RUAN X Y, HONG S T, et al. Effective treatments for enhancing carbon fiber/epoxy interfacial properties and carbon yarn weavability[J]. Textile Research Journal, 2021, 91(21/22): 2476-2486.
[20] JIN X, WANG W Y, XIAO C F, et al. Improvement of coating durability, interfacial adhesion and compressive strength of UHMWPE fiber/epoxy composites through plasma pre-treatment and polypyrrole coating[J]. Composites Science and Technology, 2016, 128: 169-175.
[21] 王闻宇, 刘亚敏, 金欣, 等. 聚吡咯修饰碳纤维/环氧树脂复合材料的界面剪切强度[J]. 材料研究学报, 2018, 32(3): 210-215.
WANG Wenyu, LIU Yamin, JIN Xin, et al. Effect of polypyrrole modified carbon fiber on interfacial property of composite PPy-carbon fiber/epoxy[J]. Chinese Journal of Materials Research, 2018, 32(3): 210-215.
[22] LIN J S. Effect of polypyrrole deposition of carbon fiber on the thermal expansion of carbon fiber-epoxy composites[J]. Journal of Polymer Research, 1999, 6(4): 237-242.
[23] LI Q, LIN K, LIU Z, et al. Chemical diversity for tailoring negative thermal expansion[J]. Chemical Reviews, 2022, 122(9): 8438-8486.
doi: 10.1021/acs.chemrev.1c00756 pmid: 35258938
[24] AZUMA M, OKA K, NABETANI K. Negative thermal expansion induced by intermetallic charge transfer[J]. Science and Technology of Advanced Materials, 2015, 16(3): 1-7.
[25] 周晓东, 林群芳, 戴干策. 玻璃纤维毡增强聚丙烯复合材料的冷热循环疲劳特性[J]. 复合材料学报, 2000, 17(3): 13-16.
ZHOU Xiaodong, LIN Qunfang, DAI Gance. Thermal-cold fatigue of glassm at rein forced polypropylene[J]. Acta Materiae Compositae Sinica, 2000, 17 (3): 13-16.
[1] 陈莹, 沈娜弟, 张露. 全纤维电容式传感器的结构设计及其性能[J]. 纺织学报, 2024, 45(05): 43-50.
[2] 王博, 刘美亚, 陈明娜, 宋孜灿, 夏明, 李沐芳, 王栋. 聚吡咯/氨纶长丝的应变传感性能与应用[J]. 纺织学报, 2024, 45(02): 119-125.
[3] 艾靓雯, 卢东星, 廖师琴, 王清清. 基于原位冷冻界面聚合法的纱线传感器制备及其应变传感性能[J]. 纺织学报, 2024, 45(01): 74-82.
[4] 万爱兰, 沈新燕, 王晓晓, 赵树强. 聚多巴胺修饰还原氧化石墨烯/聚吡咯导电织物的制备及其传感响应特性[J]. 纺织学报, 2023, 44(01): 156-163.
[5] 俞杨销, 李枫, 王煜煜, 王善龙, 王建南, 许建梅. 聚吡咯/丝素导电纳米纤维膜的制备及其性能[J]. 纺织学报, 2022, 43(10): 16-23.
[6] 周筱雅, 马定海, 胡铖烨, 洪剑寒, 刘永坤, 韩潇, 闫涛. 涤纶/聚酰胺6纳米纤维包覆纱的连续制备及其应用[J]. 纺织学报, 2022, 43(02): 110-115.
[7] 李博, 樊威, 高兴忠, 王淑娟, 李志虎. 碳纤维增强类玻璃环氧高分子复合材料闭环回收利用[J]. 纺织学报, 2022, 43(01): 15-20.
[8] 邹梨花, 杨莉, 兰春桃, 阮芳涛, 徐珍珍. 层层组装氧化石墨烯/聚吡咯涂层棉织物的电磁屏蔽性能[J]. 纺织学报, 2021, 42(12): 111-118.
[9] 陈莹, 方浩霞. 疏水性导电聚吡咯整理棉织物的制备及其性能[J]. 纺织学报, 2021, 42(10): 115-119.
[10] 王晓菲, 万爱兰, 沈新燕. 基于聚多巴胺修饰的聚吡咯导电织物制备与应变传感性能[J]. 纺织学报, 2021, 42(06): 114-119.
[11] 刘晓倩, 陈玉, 周惠敏, 闫源, 夏鑫. 等离子体接枝丙烯酸改性聚丙烯腈导电纳米纤维纱线的制备[J]. 纺织学报, 2021, 42(05): 109-114.
[12] 于佳, 辛斌杰, 卓婷婷, 周曦. 高导电性铜/聚吡咯涂层羊毛织物的制备与表征[J]. 纺织学报, 2021, 42(01): 112-117.
[13] 王博, 凡力华, 原韵, 殷允杰, 王潮霞. 可拉伸聚吡咯/棉针织物的制备及其储电性能[J]. 纺织学报, 2020, 41(10): 101-106.
[14] 王晓菲, 万爱兰. 紫外线辐照聚吡咯/银导电涤纶织物的制备[J]. 纺织学报, 2020, 41(04): 112-116.
[15] 林佳濛, 万爱兰, 缪旭红. 聚吡咯/银导电涤纶织物的制备及其性能[J]. 纺织学报, 2020, 41(03): 113-117.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!