纺织学报 ›› 2024, Vol. 45 ›› Issue (02): 77-84.doi: 10.13475/j.fzxb.20231005201
FANG Chunyue1, LIU Zixuan1, JIA Lixia1,2, YAN Ruosi1,2()
摘要:
为揭示双等离子体改性对超高分子量聚乙烯(UHMWPE)复合材料冲击性能的影响,采用真空辅助树脂灌注成型技术(VARI)制成UHMWPE复合材料,借助原子力显微镜等手段对改性前后的纤维表面进行观测,探究复合材料在低速及高速冲击时的抗冲击性能以及防弹机制。低速冲击载荷作为响应值构筑响应曲面模型,高速摄影机捕捉子弹侵彻改性前后复合材料的过程,分析板材的吸能情况并对侵彻后的试样进行表面观测。结果表明:未改性板材通过各层振荡式波动以形成严重分层来耗散能量;改性后的材料能有效地包覆住子弹,背弹面表层纤维呈现原纤化,断口处出现树脂大量富集,阻抗作用增强,吸能值较未改性材料提高45.59%。
中图分类号:
[1] | TIAN K, TAY T E, TAN V B C, et al. Improving the impact performance and residual strength of carbon fibre reinforced polymer composite through intralaminar hybridization[J]. Composites Part A: Applied Science and Manufacturing, 2023. DOI:10.1016/j.compositesa.2023.107590. |
[2] | 何业茂, 焦亚男, 周庆, 等. 弹道防护用先进复合材料弹道响应的研究进展[J]. 复合材料学报, 2021, 38(5): 1331-1347. |
HE Yemao, JIAO Yanan, ZHOU Qing, et al. Research progress on ballistic response of advanced composite for ballistic protection[J]. Acta Materiae Compositae Sinica, 2021, 38(5): 1331-1347. | |
[3] |
YANG G J, PARK M, PARK S J. Recent progresses of fabrication and characterization of fibers-reinforced composites: a review[J]. Composites Communications, 2019, 14: 34-42.
doi: 10.1016/j.coco.2019.05.004 |
[4] |
CHUKOV D I, ZHEREBTSOV D, OLIFIROV L, et al. Comparison between self-reinforced composites based on ultra-high molecular weight polyethylene fibers and isotropic UHMWPE[J]. Mendeleev Communications, 2020, 30(1): 49-51.
doi: 10.1016/j.mencom.2020.01.016 |
[5] | ZHANG Q Y, QIN Z G, YAN R S, et al. Processing technology and ballistic-resistant mechanism of shear thickening fluid/high-performance fiber-reinforced composites: a review[J]. Composite structures, 2021. DOI:10.1016/J.COMPSTRUCT.2021.113806. |
[6] | 吕庆涛, 赵世波, 杜培健, 等. 树脂基纺织复合材料疲劳性能表征与分析方法研究现状[J]. 纺织学报, 2021, 42(1): 181-189. |
LÜ Qingtao, ZHAO Shibo, DU Peijian, et al. Research status of fatigue properties characterization and analysis methods of resin matrix composites[J]. Journal of Textile Research, 2021, 42(1): 181-189.
doi: 10.1177/004051757204200310 |
|
[7] | WU M J, JIA L X, LU S L, et al. Interfacial performance of high-performance fiber-reinforced composites improved by cold plasma treatment: a review[J]. Surfaces and Interfaces, 2021. DOI:10.1016/J.SURFIN.2021.101077. |
[8] | CHHETRI S, BOUGHERARA H. A comprehensive review on surface modification of UHMWPE fiber and interfacial properties[J]. Composites Part A: Applied science and manufacturing, 2021.DOI:10.1016/j.compositesa.2020.106146. |
[9] | 刘东炎, 郑成燕, 王晓旭, 等. 超高分子量聚乙烯织物/聚脲柔性复合材料的抗破片侵彻机制[J]. 纺织学报, 2023, 44(3): 79-87. |
LIU Dongyan, ZHENG Chengyan, WANG Xiaoxu, et al. Projectile penetration mechanism of ultra-high molecular weight polyethylene fabric/polyurea flexible composites[J]. Journal of Textile Research, 2023, 44(3): 79-87. | |
[10] | YANG Z M, LIU J X, WANG F C, et al. Effect of fiber hybridization on mechanical performances and impact behaviors of basalt fiber/UHMWPE fiber reinforced epoxy composites[J]. Composite structures, 2019, 229: 1-13. |
[11] | WU M J, JIA L X, CHEN Z H, et al. Synergetic enhancement of interfacial properties and impact resistant of UHMWPE fiber reinforced composites by oxygen plasma modification[J]. Composite structures, 2022. DOI:10.1016/j.compstruct.2022.115663. |
[12] | 徐铭涛, 嵇宇, 仲越, 等. 碳纤维/环氧树脂基复合材料增韧改性研究进展[J]. 纺织学报, 2022, 43(9): 203-210. |
XU Mingtao, JI Yu, ZHONG Yue, et al. Review on toughening modification of carbon fiber/epoxy resin composites[J]. Journal of Textile Research, 2022, 43(9): 203-210. | |
[13] |
FANG C Y, ZHOU Y H, JIA L X, et al. Interfacial properties of multicomponent plasma-modified high-performance fiber-reinforced composites: a review[J]. Polymer Composites, 2022, 43(8): 4866.
doi: 10.1002/pc.v43.8 |
[14] |
KARTHIKEYAN K, RUSSELL B. Polyethylene ballistic laminates: failure mechanics and interface effect[J]. Materials & Design, 2014, 63: 115-125.
doi: 10.1016/j.matdes.2014.05.069 |
[1] | 谷元慧, 王曙东, 张典堂. 基于多尺度模型的编织复合材料圆管扭转行为有限元模拟[J]. 纺织学报, 2023, 44(12): 88-95. |
[2] | 李麒阳, 季诚昌, 郗欣甫, 孙以泽. 大尺寸异形结构芯模编织策略及纱线轨迹预测[J]. 纺织学报, 2023, 44(10): 188-195. |
[3] | 左祺, 吴华伟, 王春红, 杜娟娟. 纱线结构对苎麻短纤纱复合材料拉伸性能的影响[J]. 纺织学报, 2023, 44(10): 81-89. |
[4] | 钱晨, 黄博翔, 李永强, 万军民, 傅雅琴. 增强纤维用上浆剂的耐高温化改性研究进展[J]. 纺织学报, 2023, 44(09): 232-242. |
[5] | 孙明涛, 陈成玉, 闫伟霞, 曹珊珊, 韩克清. 针刺加固频率对黄麻纤维/聚乳酸短纤复合板性能的影响[J]. 纺织学报, 2023, 44(09): 91-98. |
[6] | 汪泽幸, 周衡书, 杨敏, 谭冬宜. 不同循环加载路径下黄麻织物/聚乙烯复合材料的变形特性[J]. 纺织学报, 2023, 44(09): 99-107. |
[7] | 张杏, 叶伟, 龙啸云, 曹海建, 孙启龙, 马岩, 王征. 超高分子量聚乙烯纤维织物/热塑性聚氨酯复合材料的界面黏结性能[J]. 纺织学报, 2023, 44(08): 143-150. |
[8] | 安雪, 刘太奇, 李言, 赵小龙. 牢固结合的多层纳米纤维复合材料的制备及其过滤性能[J]. 纺织学报, 2023, 44(08): 50-56. |
[9] | 陈露, 吴孟锦, 贾立霞, 阎若思. 氧等离子体改性超高分子量聚乙烯纤维复合材料层间损伤声发射特征分析[J]. 纺织学报, 2023, 44(07): 116-125. |
[10] | 段成红, 吴港本, 罗翔鹏. 基于DIGIMAT的碳纤维增强环氧树脂编织复合材料的力学性能[J]. 纺织学报, 2023, 44(07): 126-131. |
[11] | 杨金, 李麒阳, 季霞, 孙以泽. 复合材料编织-缠绕-拉挤系统建模及其控制策略[J]. 纺织学报, 2023, 44(07): 199-206. |
[12] | 李皎, 陈利, 姚天磊, 陈小明. 类回转预制体针刺机器人系统设计[J]. 纺织学报, 2023, 44(07): 207-213. |
[13] | 夏良君, 曹根阳, 刘欣, 徐卫林. 高性能纤维及其制品颜色构建的研究进展[J]. 纺织学报, 2023, 44(06): 1-9. |
[14] | 吕钧炜, 罗龙波, 刘向阳. 基于直接氟化技术的芳纶表/界面结构设计与制备研究进展[J]. 纺织学报, 2023, 44(06): 21-27. |
[15] | 韦玉辉, 郑晨, 程尔骕, 赵书涵, 苏兆伟. 光催化自清洁芳纶织物的制备及其性能[J]. 纺织学报, 2023, 44(05): 171-176. |
|