纺织学报 ›› 2025, Vol. 46 ›› Issue (01): 34-41.doi: 10.13475/j.fzxb.20231006301

• 纺织工程 • 上一篇    下一篇

装有气流导向装置的网格圈式集聚纺数值模拟与实验验证

宋凯莉, 郭明瑞, 高卫东()   

  1. 生态纺织教育部重点实验室(江南大学), 江苏 无锡 214122
  • 收稿日期:2023-10-17 修回日期:2024-04-07 出版日期:2025-01-15 发布日期:2025-01-15
  • 通讯作者: 高卫东(1959—),男,教授,博士。主要研究方向为现代纺织技术。E-mail: gaowd@163.com
  • 作者简介:宋凯莉(1996—),女,博士生。主要研究方向为先进纺纱技术。
  • 基金资助:
    国家自然科学基金项目(52003105);江苏省研究生科研与实践创新计划项目(KYCX24_2565)

Numerical simulation and experimental investigation of lattice-apron compact spinning with airflow-guiding device

SONG Kaili, GUO Mingrui, GAO Weidong()   

  1. Key Laboratory of Eco-Textiles (Jiangnan University), Ministry of Education, Wuxi, Jiangsu 214122, China
  • Received:2023-10-17 Revised:2024-04-07 Published:2025-01-15 Online:2025-01-15

摘要: 为优化集聚纺集聚区的气流状态,通过在集聚区安装一个气流导向装置来改变流场分布,以增强气流作用效果。为提高研究效率,量化分析流场参数,借助ANSYS Fluent软件对集聚区流场进行数值模拟。将网格圈加入数值模拟模型,优化了仿真参数,得到更准确的集聚区气流分布规律。通过对比气流在集聚区的集聚有效面积,探索负压大小和气流导向装置对集聚区平行于罗拉轴向的气流速度分量的影响,并对结果进行纺纱实验验证。结果表明:负压的增大和气流导向装置均可增大集聚区的集聚有效面积,面积增大幅度分别为34.49%和62.16%;纱线性能方面,线密度越大,气流导向装置的提升效果越好,纺制29.2 tex棉纱时,与无导向装置相比,毛羽(≥3 mm)减少了28.9%,断裂强度提升了7.62%。

关键词: 集聚纺, 数值模拟, 气流导向装置, 气流分析, 纱线质量

Abstract:

Objective In order to optimize the airflow state in the converging zone of the compact spinning system, improve the utilization rate of negative pressure, and reduce the energy consumption of production, this research aims to modify the flow field distribution by installing an airflow-guiding device in the converging zone to enhance the effect of airflow. Through numerical simulations and spinning experiments, the performance of the airflow-guiding device was explored under various yarn densities to assess its enhancement of yarn properties.

Method A three-dimensional (3-D) geometrical model of the converging zone was developed, and numerical simulations of the flow field were performed using ANSYS Fluent software. A lattice-apron was innovatively added to the model to obtain a more accurate airflow distribution pattern in the converging zone. At the end of the simulation, the effective airflow area in the converging zone was compared, and the influence of negative pressure and the airflow-guiding device on airflow distribution in the converging zone was analyzed. Finally, spinning experiments were conducted to verify the accuracy of the numerical simulation.

Results A comparison of the enhancement of the effective convergence area by increasing negative pressure and installing the airflow-guiding device showed that the enhancement achieved by installing the airflow-guiding device was significantly more remarkable than that achieved by increasing negative pressure. Numerical simulations demonstrated that the airflow-guiding device was efficient and energy-saving, improving the airflow field in the converging zone without increasing production energy consumption thus enabling better fiber convergence. The number of hairiness (≥3 mm) was reduced across all yarn densities after the installation of the airflow-guiding device. For the yarn linear densities (14.6, 19.4, and 29.2 tex), the greater was the yarn linear density, the more effective was the hairiness reduction. In particular, the hairiness for the three yarns was reduced by 2.88%, 22.7%, and 28.9%, respectively. For the 9.7, 7.3, and 6.5 tex yarns, hairiness was reduced, but the reduction rate was smaller, only 3.57%, 1.02%, and 3.05%, respectively. The combination of numerical simulation and the results of the installation of the airflow guiding device showed that the fiber bundles passing through the convergence zone were subjected to greater transverse airflow forces, resulting in narrower fiber bundle widths and smaller twisted triangles, thus reducing yarn hairiness. In terms of breaking strength, for yarns with the linear density in the range of 6.5-29.2 tex, the breaking strength increased by 2.81%, 3.77%, 2.89%, 3.08%, 7.62%, and 2.24% following the installation of the airflow-guiding device. After installation, the fiber bundle in the converging zone became narrower, fibers were more tightly packed, and friction between the fibers increased, making it more difficult for them to slip, which enhanced the yarn strength and elongation. Regarding yarn evenness, the installation of the airflow-guiding device improved the evenness of all yarns to a certain extent. The increased airflow speed caused fibers to shift from the yarn edges and be distributed more uniformly within the yarn, improving the yarn evenness.

Conclusion An airflow-guiding device was designed for four-roller compact spinning with the lattice-apron, and the influence of the airflow-guiding device on the airflow field was investigated through numerical simulation and spinning tests. The numerical simulation results show that both the increase of negative pressure and the installation of the airflow-guiding device can enhance the effect of airflow in the converging zone. The airflow-guiding device directs more transverse airflow into the converging zone, which facilitates fiber bundle convergence. Yarn performance tests confirm that the airflow-guiding device improves yarn hairiness, elongation, and evenness across six different yarn densities, proving the device's effectiveness and broad applicability. In conclusion, the positive effects of the airflow-guiding device were confirmed in high and low-count yarns through numerical simulation and spinning tests.

Key words: compact spinning, numerical simulation, airflow-guiding device, airflow analysis, yarn quality

中图分类号: 

  • TS104.7

图1

集聚区三维模型"

图2

气流导向装置具体尺寸 注:单位为mm。"

图3

压力进出口边界"

图4

单个网孔单元模型"

表1

网格圈流速与压降"

流速/(m·s-1) 压降/Pa
5 8.75
10 19.27
20 45.60
30 78.98
40 119.43
50 166.94

图5

网格圈上方不同坐标轴速度分量等值线图"

表2

不同速率区间的面积统计"

速率区间/
(mm·s-1)
不同速率区间分布面积/mm2
A1组 A2组 B1组 B2组
≥5 000 73.95 97.78 85.31 112.73
[4 000,5 000) 11.02 14.97 12.63 31.39
[3 000,4 000) 16.27 42.99 17.72 55.52
[2 000,3 000) 27.47 68.50 33.63 54.72
[1 000,2 000) 90.63 131.31 145.62 169.75
[0,1 000) 520.87 384.66 445.30 316.10

表3

纺纱工艺参数"

线密度/
tex
粗纱定量/
(g·(10 m)-1)
细纱捻
系数
吸风
负压/Pa
钢丝圈型号
6.5 3.0 400 -1 600 U1UL udr18/0
7.3 3.0 380 -1 600 U1UL udr15/0
9.7 3.0 350 -1 600 U1UL udr11/0
14.6 4.0 340 -2 500 U1UL udr9/0
19.4 4.0 330 -2 500 U1UL udr7/0
29.2 4.0 330 -2 500 U1UL udr1/0

表4

纱线性能测试结果"

线密度/
tex
有无
导向片
毛羽(≥3 mm)/
(根·(100 m)-1)
断裂强度/
(cN·tex-1)
条干
CV值/%
6.5 163 21.3 15.43
159 21.9 15.28
7.3 98 21.2 14.96
97 22.0 14.65
9.7 84 24.2 13.14
81 24.9 12.56
14.6 104 19.5 17.22
101 20.1 17.13
19.4 163 21.0 14.88
126 22.6 14.39
29.2 159 22.3 13.25
113 22.8 13.18
[1] 高小亮, 谢春萍, 苏旭中. 负压对紧密纺成纱质量的影响[J]. 国际纺织导报, 2007(6): 48-50,52.
GAO Xiaoliang, XIE Chunping, SU Xuzhong. The effect of negative pressure on the quality of compact spun yarns[J]. Melliand China, 2007(6): 48-50,52.
[2] 刘世瑞, 邹专勇, 华志宏, 等. 气流槽聚型集聚纺纱系统集聚过程及机理分析[J]. 东华大学学报(自然科学版), 2009, 35(5): 510-514.
LIU Shirui, ZOU Zhuanyong, HUA Zhihong, et al. Condensing process and mechanism analysis of compact spinning system with inspiratory groove[J]. Journal of Donghua University(Natural Science), 2009, 35(5): 510-514.
[3] 竺韵德, 邹专勇, 俞建勇, 等. 气流槽聚型集聚纺纱系统三维流场的数值研究[J]. 东华大学学报(自然科学版), 2009, 35(3): 294-298.
ZHU Yunde, ZOU Zhuanyong, YU Jianyong, et al. Numerical study of three dimensional flow field in compact spinning system with inspiratory groove[J]. Journal of Donghua University(Natural Science), 2009, 35(3): 294-298.
[4] 沈晓来. 立达K44紧密纺装置主要元件的作用[J]. 上海纺织科技, 2005, 33(2): 27-37.
SHEN Xiaolai. Function of main elements of Rieter K44 compact spinning set[J]. Shanghai Textile Science & Technology, 2005, 33(2): 27-37.
[5] 李聪. 基于Fluent的卡摩纺系统数值模拟与分析[D]. 乌鲁木齐: 新疆大学, 2018: 60-61.
LI Cong. Numerical simulation and analysis of comfort spinning system using Fluent software[D]. Urumchi: Xinjiang University, 2018: 60-61.
[6] 刘晓艳, 刘新金, 刘娜, 等. 基于有限元方法的全聚纺集聚区流场数值模拟[J]. 纺织学报, 2015, 36(5): 29-33,38.
LIU Xiaoyan, LIU Xinjin, LIU Na, et al. Numerical simulation on airflow field in complete condensing spinning system using finite element method[J]. Journal of Textile Research, 2015, 36(5): 29-33,38.
[7] 王超, 谢春萍, 苏旭中, 等. 紧密纺集聚区气流导向装置的应用效果[J]. 棉纺织技术, 2011, 39(8): 19-21.
WANG Chao, XIE Chunping, SU Xuzhong, et al. Application of airflow guide device in compact area[J]. Cotton Textile Technology, 2011, 39(8): 19-21.
[8] 梅恒, 徐伯俊, 王超, 等. 基于Fluent的改进型四罗拉紧密纺系统三维流场数值仿真与分析[J]. 纺织学报, 2012, 33(11): 112-116.
MEI Heng, XU Bojun, WANG Chao, et al. Numerical simulation and analysis of three dimensional flow field of modified four-roller compact spinning system based on Fluent[J]. Journal of Textile Research, 2012, 33(11): 112-116.
[9] 曾泳春, 郁崇文. 喷气纺喷嘴中气流流动的数值计算[J]. 东华大学学报(自然科学版), 2002, 30(5):11-16.
ZENG Yongchun, YU Chongwen. Numerical computation of air flow in the nozzle of air-jet spinning[J]. Journal of Donghua University (Natural Science), 2002, 30(5): 11-16.
[10] 傅培花, 程隆棣, 王善元. 集聚纺纱系统技术中气流速度场的数值模拟[J]. 青岛大学学报, 2005, 20(4): 74-79.
FU Peihua, CHENG Longdi, WANG Shanyuan. Numerical simulation of airflow velocity field in agglomeration spinning system technology[J]. Journal of Qingdao University, 2005, 20(4): 74-79.
[11] 邹专勇, 汪燕, 俞建勇, 等. 网格圈集聚纺纱系统三维流场表征与分析[J]. 纺织学报, 2009, 30(6): 24-28.
ZOU Zhuanyong, WANG Yan, YU Jianyong, et al. Characterization and analysis of three dimensional flow field in compact spinning with lattice apron[J]. Journal of Textile Research, 2009, 30(6): 24-28.
[12] 刘文龙, 徐伯俊, 谢春萍, 等. 基于Fluent的全聚纺不同吸风槽集聚效果数值模拟[J]. 纺织学报, 2014, 35(9): 137-143.
LIU Wenlong, XU Bojun, XIE Chunping, et al. Numerical simulation of condensing effect of air suction slot's structure in complete condensing spinning system based on Fluent[J]. Journal of Textile Research, 2014, 35(9): 137-143.
[13] ZOU Zhuanyong, ZHU Yunde, HUA Zhihong, et al. Studies of flexible fiber trajectory and its pneumatic condensing mechanism in compact spinning with lattice apron[J]. Textile Research Journal, 2010, 80(8): 712-719.
[1] 张定眺, 王倩茹, 邱芳, 李凤艳. 改进转杯纺输纤通道气流场及其纤维伸直形态的模拟[J]. 纺织学报, 2025, 46(02): 100-105.
[2] 李玲, 史倩倩, 田顺, 汪军. 输纤通道对称性对双喂入双分梳转杯纺气流场以及纱线特性的影响[J]. 纺织学报, 2025, 46(02): 69-77.
[3] 李慧敏, 刘淑强, 杜琳琳, 张曼, 吴改红. 玄武岩/聚酰亚胺三维间隔机织物的参数化建模及高温环境传热数值模拟[J]. 纺织学报, 2025, 46(01): 87-94.
[4] 王珏, 晏石林, 李永静, 何龙飞, 谢翔宇, 孟晓旭. 剪切变形对各向异性织物主渗透率及浸润特性的影响[J]. 纺织学报, 2024, 45(12): 109-117.
[5] 奚传智, 王家源, 王泳智, 陈革, 裴泽光. 低能耗喷气涡流纺喷嘴气流场数值模拟与纺纱实验[J]. 纺织学报, 2024, 45(12): 206-214.
[6] 章红豆, 陈芳, 楚祥婷, 陆惠文, 刘新金, 苏旭中. 基于示踪纤维法测试的化纤条内纤维弯钩[J]. 纺织学报, 2024, 45(12): 74-79.
[7] 刘婷, 闫涛, 潘志娟. 香蕉茎秆纤维/抗菌纤维混纺纱的制备及其性能[J]. 纺织学报, 2024, 45(10): 48-54.
[8] 张定眺, 王倩茹, 邱芳, 李凤艳. 转杯纺分梳排杂区气流场的多维数值模拟对比[J]. 纺织学报, 2024, 45(10): 64-71.
[9] 田少萌, 张丽, 石浩轩, 徐阳. 基于ANSYS Workbench的高密机织滤料动态形变模拟与分析[J]. 纺织学报, 2024, 45(09): 63-69.
[10] 张琦, 左露娇, 屠佳妮, 聂美婷. 经编贾卡鞋面材料透气性的数值模拟[J]. 纺织学报, 2024, 45(09): 78-83.
[11] 岳旭, 王蕾, 孙丰鑫, 潘如如, 高卫东. 基于ABAQUS的平纹织物同面对向弯曲有限元模拟[J]. 纺织学报, 2024, 45(08): 165-172.
[12] 谢红, 张林蔚, 沈云萍. 基于人体臂部的连续动态服装压力预测模型及准确性表征方法[J]. 纺织学报, 2024, 45(07): 150-158.
[13] 刘倩倩, 尤健明, 王琰, 孙成磊, 祝国成. 纤维弯曲对其集合体过滤特性影响的稳态数值分析[J]. 纺织学报, 2024, 45(07): 31-39.
[14] 扶才志, 曹鸿艳, 廖文皓, 李忠健, 黄琪翔, 蒲三成. 基于多视角图像的纱线条干均匀度测量方法[J]. 纺织学报, 2024, 45(03): 49-57.
[15] 韩烨, 田苗, 蒋青昀, 苏云, 李俊. 织物-空气层-皮肤三维结构建模及其传热模拟[J]. 纺织学报, 2024, 45(02): 198-205.
Viewed
Full text
41
HTML PDF
Just accepted Online first Issue Just accepted Online first Issue
0 0 10 0 0 31

  From Others local
  Times 13 28
  Rate 32% 68%

Abstract
85
Just accepted Online first Issue
0 0 85
  From Others local
  Times 51 34
  Rate 60% 40%

Cited

Web of Science  Crossref   ScienceDirect  Search for Citations in Google Scholar >>
 
This page requires you have already subscribed to WoS.
  Shared   
  Discussed   
No Suggested Reading articles found!