纺织学报 ›› 2024, Vol. 45 ›› Issue (02): 238-245.doi: 10.13475/j.fzxb.20231006601
TAO Jing1,2, WANG Junliang2(), ZHANG Jie2
摘要:
为揭示机器人运动速度等参数对纱线性能的影响规律,考虑纱线夹持长度与拉伸速度对断裂强力分布的影响,分析了动态环境下环锭纺细纱断裂强力的分布特征。首先设计拉伸实验对环锭纺细纱性能进行分析,并构建了环锭纺短纤纱本构模型表征其强伸性能。其次建立有限元仿真模型模拟短纤纱的断裂过程,揭示了纤维间载荷传播的规律和纱体结构演化的4个阶段模型。最后对纱线强力数据的统计特征进行分析,建立了其分布参数模型。结果表明,分布检验与威布尔分布相比,对数正态分布的拟合误差最小,残差平方和为0.000 6,进一步提高了动态环境下环锭纺细纱强力预测的可靠性。
中图分类号:
[1] | 唐新军, 宋均燕, 何小东. 国内外环锭纺自动接头装置的技术进展[J]. 棉纺织技术, 2019, 47(1):78-84. |
TANG Xinjun, SONG Junyan, HE Xiaodong. Technical progress of ring spinning automatic joint device at home and abroad[J]. Cotton Spinning Technology, 2019, 47(1): 78-84. | |
[2] | 张洁, 徐楚桥, 汪俊亮, 等. 数据驱动的机器人化纺织生产智能管控系统研究进展[J]. 纺织学报, 2022, 43(9):1-10. |
ZHANG Jie, XU Chuqiao, WANG Junliang, et al. Key technologies for full-process robotic automatic production in ring spinning[J]. Journal of Textile Research, 2022, 43(9):1-10.
doi: 10.1177/004051757304300101 |
|
[3] | 尹晓娇, 王府梅, 胡立霞. 木棉纤维纺织品破损情况研究[J]. 棉纺织技术, 2014, 42(11): 21-23,68. |
YIN Xiaojiao, WANG Fumei, HU Lixia. Study on breakage and loss of kapok fiber textiles[J]. Cotton Spinning Technology, 2014, 42(11): 21-23,68. | |
[4] |
JIANG Z, YU C, YANG J, et al. Estimation of yarn strength based on critical slipping length and fiber length distribution[J]. Textile Research Journal, 2019, 89(2): 182-194.
doi: 10.1177/0040517517741160 |
[5] | HU Z, ZHAO Q, WANG J. The prediction model of cot-ton yarn quality based on artificial recurrent neural network[C]// International Conference on Applications and Techniques in Cyber Security and Intelligence. Springer, Cham, 2019: 857-866. |
[6] | 谷有众, 高卫东, 卢雨正, 等. 应用遗传算法优化支持向量回归机的喷气涡流纺纱线质量预测[J]. 纺织学报, 2016, 37(7):142-148. |
GU Youzhong, GAO Weidong, LU Yuzheng, et al. Application of genetic algorithm to optimize support vector regression machine for yarn quality prediction in jet vortex spinning[J]. Journal of Textile Research, 2016, 37(7):142-148. | |
[7] | 肖志永, 崔红, 姚兴川. 自捻纱线强力的Weibull分布预测[J]. 河南工程学院学报(自然科学版), 2014, 26(1):6-10. |
XIAO Zhiyong, CUI Hong, YAO Xingchuan. Prediction of the Weibull distribution of self-twisting yarn strengths[J]. Journal of Henan University of Engineering(Natural Science Edition), 2014, 26(1):6-10. | |
[8] | 冷鹃, 肖爱平, 杨喜爱, 等. 苎麻单纤维断裂强力统计特征研究[J]. 中国麻业科学, 2014, 36(3):151-155. |
LENG Juan, XIAO Aiping, YANG Xi'ai, et al. Statistical characterization of ramie single fiber strength at breaking[J]. Plant Fiber Sciences in China, 2014, 36(3):151-155. | |
[9] | 陈国华, 丁辛. 短纤维强力的概率分布分析[J]. 东华大学学报(自然科学版), 2004(4):46-48,75. |
CHEN Guohua, DING Xin. Probability distribution analysis of staple fiber strength[J]. Journal of Donghua University(Natural Science), 2004(4):46-48,75. | |
[10] |
ZHANG L, XU A, AN L, et al. Bayesian inference of system reliability for multicomponent stress-strength model under Marshall-Olkin Weibull distribution[J]. Systems, 2022, 10(6): 196.
doi: 10.3390/systems10060196 |
[11] | 张华, 刘帅, 杨瑞华. 长丝包覆复合包芯纱拉伸性能建模研究[J]. 纺织学报, 2023, 44(8):57-62. |
ZHANG Hua, LIU Shuai, YANG Ruihua. Tensile property modeling of composite core/sheath yarn with double filaments[J]. Journal of Textile Research, 2023, 44(8):57-62. | |
[12] | WEI Z, ZISTL M, GERKE S, et al. Analysis of ductile damage and fracture under reverse loading[J]. International Journal of Mechanical Sciences, 2022.DOI:10.1016/j.ijmecsci.2022.107476. |
[13] |
SRIPRATEEP K, BOHEZ E. A new computer geometric modelling approach of yarn structures for the conventional ring spinning process[J]. The Journal of the Textile Institute, 2009, 100(3): 223-236.
doi: 10.1080/00405000701757958 |
[14] | NIGRI A, BARBI E, LEVANTESI S. The relationship between longevity and lifespan variation[J]. Statistical Methods & Applications, 2022, 31(3): 481-493. |
[15] | ZENG Z, LI Y, FENG M. The spatial inheritance enhances cooperation in weak prisoner's dilemmas with agents'exponential lifespan[J]. Physica A: Statistical Mechanics and its Applications, 2022.DOI:10.1016/j.physa.2022.126968. |
[16] | LI L, GUAN J, YUAN P, et al. A Weibull distribution-based method for the analysis of concrete fracture[J]. Engineering Fracture Mechanics, 2021.DOI:10.1016/j.engfracmech.2021.107964. |
[1] | 陈泰芳, 周亚勤, 汪俊亮, 徐楚桥, 李冬武. 基于视觉特征强化的环锭纺细纱断头在线检测方法[J]. 纺织学报, 2023, 44(08): 63-72. |
[2] | 刘帅, 郭晨宇, 陈鹤文, 杨瑞华. 赛络菲尔包缠纱结构建模分析与性能优化[J]. 纺织学报, 2023, 44(04): 63-69. |
[3] | 吴佳玥, 吴巧英. 羽绒制品热传递的有限元仿真[J]. 纺织学报, 2022, 43(11): 154-162. |
[4] | 郑小虎, 刘正好, 陈峰, 刘志峰, 汪俊亮, 侯曦, 丁司懿. 环锭纺纱全流程机器人自动化生产关键技术[J]. 纺织学报, 2022, 43(09): 11-20. |
[5] | 郭明瑞, 高卫东. 两通道环锭纺单区牵伸纺制段彩竹节纱的方法及其特点[J]. 纺织学报, 2022, 43(08): 21-26. |
[6] | 牛雪娟, 徐妍慧. 不同流通间隙排布条件下碳纤维束展纤行为研究[J]. 纺织学报, 2022, 43(06): 165-170. |
[7] | 肖琪, 王瑞, 张淑洁, 孙红玉, 王静茹. 基于ABAQUS的涤/棉混纺机织物起球过程有限元仿真[J]. 纺织学报, 2022, 43(06): 70-78. |
[8] | 杨瑞华, 潘博, 郭霞, 王利军, 李健伟. 环锭纺及转杯纺和喷气涡流纺混色纱的纤维混合效果研究[J]. 纺织学报, 2021, 42(07): 76-81. |
[9] | 倪洁, 杨建平, 郁崇文. 股线与单纱捻系数比对粘胶股线性能的影响[J]. 纺织学报, 2021, 42(05): 46-50. |
[10] | 殷士勇, 鲍劲松, 唐仕喜, 杨芸. 环锭纺纱信息物理生产系统建模方法[J]. 纺织学报, 2021, 42(02): 65-73. |
[11] | 孙亚博, 李立军, 马崇启, 吴兆南, 秦愈. 基于ABAQUS的筒状纬编针织物拉伸力学性能模拟[J]. 纺织学报, 2021, 42(02): 107-112. |
[12] | 戴宁, 彭来湖, 胡旭东, 崔英, 钟垚森, 王越峰. 纬编针织机织针自由状态下固有频率测试方法[J]. 纺织学报, 2020, 41(11): 150-155. |
[13] | 张婷婷, 薛元, 徐志武, 于健, 陈连光. 三通道数码纺混色纱色谱体系构建及其彩色纱性能分析[J]. 纺织学报, 2019, 40(09): 48-55. |
[14] | 殷士勇, 鲍劲松, 孙学民, 王佳铖. 基于信息物理系统的环锭纺纱智能车间温度闭环精准控制方法[J]. 纺织学报, 2019, 40(02): 159-165. |
[15] | 李沛赢 郭明瑞 高卫东. 应用给湿装置改善环锭纺成纱毛羽[J]. 纺织学报, 2018, 39(05): 108-112. |
|