纺织学报 ›› 2024, Vol. 45 ›› Issue (02): 45-51.doi: 10.13475/j.fzxb.20231008101

• 纤维材料 • 上一篇    下一篇

基于拉曼光谱的羊毛二硫键及构象含量分析

向宇1, 周爱晖2, 王思翔1, 季巧1, 文馨可1, 袁久刚1()   

  1. 1.江南大学 纺织科学与工程学院, 江苏 无锡 214122
    2.福建纤维检验中心, 福建 福州 350001
  • 收稿日期:2023-10-24 修回日期:2023-12-02 出版日期:2024-02-15 发布日期:2024-03-29
  • 通讯作者: 袁久刚(1982—),男,副教授,博士。主要研究方向为天然纤维的提取及功能化改性。E-mail:jiugangyuan@jiangnan.edu.cn
  • 作者简介:向宇(2000—),男,硕士生。主要研究方向为天然蛋白质材料的加工和改性。

Analysis of disulfide bonds and conformational content of wool based on Raman spectroscopy

XIANG Yu1, ZHOU Aihui2, WANG Sixiang1, JI Qiao1, WEN Xinke1, YUAN Jiugang1()   

  1. 1. School of Textile Science and Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China
    2. Fujian Fiber Inspection Center, Fuzhou, Fujian 350001, China
  • Received:2023-10-24 Revised:2023-12-02 Published:2024-02-15 Online:2024-03-29

摘要:

拉曼光谱可提供快速、简单、可重复且无损伤的定性分析。采用激光共聚焦显微拉曼光谱仪对羊毛的二硫键以及构象进行了无损分析。研究激光波长、激光强度、扫描时间、物镜大小、形态结构对羊毛微观结构测量结果的影响,优化了激光拉曼光谱对羊毛的测试条件;分别采用超声波、还原以及氧化等不同方法处理纤维,并对比分析羊毛二硫键以及构象变化。结果表明,羊毛较优的拉曼测量条件为激发波长785 nm、扫描时间20 s、激光强度50 mW和50倍物镜观察。通过对比不同方法处理后纤维的拉曼光谱图可发现:超声波处理羊毛后β折叠构象含量降低;二硫苏糖醇处理羊毛后在2 569 cm-1处出现了巯基的吸收峰,羊毛二硫键相对含量降低至28.9%,二硫键由分子内的GGG构型转变为分子间的GGT和TGT构型,蛋白质大分子由α螺旋构象转化为β折叠构象;过氧化氢处理羊毛后在1 044 cm-1处产生新的S—O吸收峰,β折叠构象含量降低。

关键词: 羊毛, 拉曼光谱, 二硫苏糖醇, 过氧化氢, 纤维结构, 二硫键

Abstract:

Objective Analysis of disulfide bonds content and its conformation is essential to study the microstructural changes in wool. Some of the currently used chemical testing methods are both time-consuming and labor-intensive, and also cause damage to the fiber during testing, together with inaccurate results sometimes. Raman spectroscopy analysis provides fast, simple, reproducible, and non-destructive and qualitative analysis, and this research proposes to analyze disulfide bonds and conformation content of wool using Roman spectroscopy.

Method To investigate the effect of different methods such as ultrasound, reduction and oxidation on the disulfide bonds and conformational changes of wool. The disulfide bonds and the conformation of wool were analyzed non-destructively using laser confocal microscopic Raman spectroscopy. The effects of laser wavelength, laser intensity, scanning time, objective size, and morphological structure on the measurement results of wool fibers were analyzed in detail. The testing conditions of laser Raman spectroscopy on wool fibers were optimized. A comparative analysis of the disulfide bonds and conformational changes of wool fibers was also carried out.

Results The results showed that the better Raman measurement conditions for wool fibers were excitation wavelength of 785 nm, laser intensity of 50 mW, scanning time of 20 s and 50× objective observation. The macromolecular structure of wool was not significantly changed by changing morphology. From the comparison of Raman spectra of fibers treated by different methods, it was found that the content of β-folding conformation decreased after ultrasonic treatment of wool fibers. The absorption peak of sulfhydryl group appeared at 2 569 cm-1 after dithiothreitol treatment of wool fibers. The relative content of disulfide bonds in wool fibers was decreased to 28.9%, and the disulfide bonds were transformed from the intramolecular GGG configuration to the intermolecular GGT and TGT configurations. The protein macromolecules were converted from α-helical conformation to β-folded conformation. The treatment of wool fibers with hydrogen peroxide produced a new S—O absorption peak at 1 044 cm-1, and the content of β-folded conformation decreased.

Conclusion Wool fibers were measured by laser confocal Raman spectroscopy, and the best test conditions were obtained by analyzing the Raman spectra at laser wavelength 785 nm, scanning time 20 s, laser intensity 50 mW and 50× objective. The macromolecular structure of wool was not significantly changed by changing morphology. After optimizing the test conditions, ultrasonic treatment and DTT reduction treatment were compared and analyzed. Raman spectra of wool fibers treated with H2O2 oxidation showed that the Raman spectra of fibers treated by different methods had a good response. Among them, the reduction treatment has the greatest influence on the disulfide bond and conformation of the fiber. The results show that Raman spectroscopy has great advantages such as simplicity, reproducibility, and being non-destructive compared with conventional wool disulfide bonds and conformational measurements.

Key words: wool, Raman spectroscopy, dithiothreitol, hydrogen peroxide, fiber structure, disulfide bood

中图分类号: 

  • TS131

图1

不同激发波长对羊毛拉曼光谱的影响"

图2

不同激光功率对羊毛拉曼光谱的影响"

图3

不同扫描时间对羊毛拉曼光谱的影响"

图4

不同物镜倍数对羊毛拉曼光谱的影响"

图5

不同形态结构对羊毛拉曼光谱的影响"

图6

不同处理条件下羊毛试样的拉曼光谱图"

图7

不同处理方式下羊毛试样二硫键伸展振动的拉曼光谱图"

表1

不同羊毛试样中二硫键组成构型及含量"

样品 GGG含量 GGT含量 TGT含量 二硫键含量
原样 64.21 16.50 19.29 49.35
超声波处理样 59.16 19.61 21.23 42.80
还原处理样 39.44 22.69 37.87 28.90
氧化处理样 55.51 22.31 22.18 34.40

图8

不同处理条件下羊毛试样的C—C骨架拉曼光谱图"

图9

不同处理条件下羊毛试样酰胺Ⅲ带的拉曼光谱图"

图10

不同羊毛试样酰胺Ⅰ带的拉曼光谱图"

[1] SHEN Xiaoxing, GAO Pu, LUO Qiulan, et al. Assembly mechanism and antistatic properties of wool fabrics with superfine graphene oxide[J]. Journal of Engineered Fibers and Fabrics, 2022.DOI:10.1177/15589250221125458.
[2] FU Jiajia, SU Jing, WANG Ping, et al. Enzymatic processing of protein-based fibers[J]. Applied Microbiology and Biotechnology, 2015, 99(24): 10387-10397.
doi: 10.1007/s00253-015-6970-x pmid: 26428240
[3] 江连洲, 王立敏, 李杨, 等. 大豆生物解离过程中形成的乳状液结构特征[J]. 大豆科技, 2019(S1): 438-443.
JIANG Lianzhou, WANG Limin, LI Yang, et al. Structural characteristics of emulsions formed during soybean biodissociation[J]. Soybean Science and Technology, 2019(S1): 438-443.
[4] KINALWA Myra N, BLANCH EWAN W, DOIG ANDREW J. Accurate determination of protein secondary structure content from Raman and Raman optical activity spec-tra[J]. Analytical Chemistry, 2010, 82(15): 6347-6349.
doi: 10.1021/ac101334h
[5] 王莉, 姚金波. 利用傅里叶变换光谱技术分析拉伸羊毛的二级结构[J]. 天津工业大学学报, 2010, 29(2): 19-24,44.
WANG Li, YAO Jinbo. Analysis of secondary structure of stretched wool by Fourier transform spectroscopy[J]. Journal of Tianjin Polytechnic University, 2010, 29(2): 19-24,44.
[6] 乔西娅, 戴连奎, 吴俭俭. 拉曼光谱特征提取在化学纤维定性鉴别中的应用[J]. 光谱学与光谱分析, 2010, 30(4): 975-978.
pmid: 20545143
QIAO Xiya, DAI Liankui, WU Jianjian. Application of Raman spectral feature extraction in the qualitative identification of chemical fibers[J]. Spectroscopy and Spectral Analysis, 2010, 30(4): 975-978.
pmid: 20545143
[7] 董鑫鑫, 杨方威, 于航, 等. 基于拉曼光谱技术的猪瘦肉新鲜度快速无损检测方法研究[J]. 光谱学与光谱分析, 2023, 43(2): 484-488.
DONG Xinxin, YANG Fangwei, YU Hang, et al. Study on the rapid nondestructive detection method for freshness of pork lean meat based on Raman spectroscopy[J]. Spectroscopy and Spectral Analysis, 2023, 43(2): 484-488.
[8] 吴俭俭, 孙国君, 戴连奎, 等. 纺织纤维拉曼光谱定性分析法[J]. 纺织学报, 2011, 32(6): 28-33.
WU Jianjian, SUN Guojun, DAI Liankui, et al. Qualitative analysis of textile fibers by Raman spectroscopy[J]. Journal of Textile Research, 2011, 32(6): 28-33.
[9] 周安杰, 刘洪玲, 苏红, 等. 利用拉曼光谱分析马海毛纤维的二级结构[J]. 东华大学学报(自然科学版), 2013, 39(1): 31-36.
ZHOU Anjie, LIU Hongling, SU Hong, et al. Secondary structure analysis of mohair fibers using Raman spectroscopy[J]. Journal of Donghua Univer-sity (Natural Science Edition), 2013, 39(1): 31-36.
[10] 侯秀良, 杨瑞玲, 崔建宝, 等. 采用拉曼光谱、液相色谱对比研究羊毛、鸡毛的结构[J]. 光谱实验室, 2010, 27(5): 1817-1820.
HOU Xiuliang, YANG Ruiling, CUI Jianbao, et al. Comparative structural study of wool and chicken feathers by Raman spectroscopy and liquid chromatography[J]. Spectroscopy Laboratory, 2010, 27(5): 1817-1820.
[11] 刘汉臣, 张丽文, 王秋萍, 等. 羊毛纤维表面处理的拉曼光谱研究[J]. 毛纺科技, 2014, 42(8): 1-4.
LIU Hanchen, ZHANG Liwen, WANG Qiuping, et al. Raman spectroscopic study on surface treatment of wool fiber[J]. Wool Textile Journal, 2014, 42(8): 1-4.
[12] BARANI Hossein, HAJI Aminoddin. Analysis of structural transformation in wool fiber resulting from oxygen plasma treatment using vibrational spectro-scopy[J]. Journal of Molecular Structure, 2015, 1079: 35-40.
doi: 10.1016/j.molstruc.2014.09.041
[13] POZZI Federica, ZALESKI Stephanie, CASADIO Francesca, et al. SERS discrimination of closely related molecules: a systematic study of natural red dyes in binary mixtures[J]. Journal of Physical Chemistry C, 2016, 120(37): 21017-21026.
doi: 10.1021/acs.jpcc.6b03317
[14] 张丽文. 变异山羊绒纤维的拉曼光谱研究[D]. 西安: 西安工程大学, 2016:36-40.
ZHANG Liwen. The investigation of variation cashmere fibers with Raman spectrum[D]. Xi'an: Xi'an Polytechnic University, 2016:36-40.
[15] 马建锋, 杨淑敏, 田根林, 等. 拉曼光谱在天然纤维素结构研究中的应用进展[J]. 光谱学与光谱分析, 2016, 36(6): 1734-1739.
pmid: 30052382
MA Jianfeng, YANG Shumin, TIAN Genlin, et al. Progress in the application of Raman spectroscopy in the structural study of natural cellulose[J]. Spectroscopy and Spectral Analysis, 2016, 36(6): 1734-1739.
pmid: 30052382
[16] 李文霞, 廖青, 刘燚. 利用付立叶红外光谱与付立叶拉曼光谱初探超细羊毛粉的光谱行为[J]. 分析科学学报, 2007(5): 519-522.
LI Wenxia, LIAO Qing, LIU Yi. A preliminary investigation of the spectral behavior of ultrafine wool powder using FTIR and FTIR-Raman spectroscopy[J]. Journal of Analytical Science, 2007(5): 519-522.
[17] 顾佳, 陈霞, 朱文园. 超声波处理对羊毛纤维性能的影响[J]. 东华大学学报(自然科学版), 2011, 37(3): 317-320.
GU Jia, CHEN Xia, ZHU Wenyuan. Effect of ultrasonic treatment on the properties of wool fiber[J]. Journal of Donghua University (Natural Science Edition), 2011, 37(3): 317-320.
[18] 刘锞琳, 何悦珊, 王钊, 等. 傅里叶红外光谱法与拉曼光谱法测定蛋白质二级结构研究进展[J]. 食品与发酵工业, 2023, 49(10): 293-298.
doi: 10.13995/j.cnki.11-1802/ts.031883
LIU Kelin, HE Yueshan, WANG Zhao, et al. Progress in the determination of protein secondary structure by Fourier infrared spectroscopy and Raman spectro-scopy[J]. Food and Fermentation Industry, 2023, 49(10): 293-298.
[19] ACKERMANN K R, KOSTER J, SCHLUCKER S. Conformations and vibrational properties of disulfide bridges: potential energy distribution in the model system diethyl disulfide[J]. Chemical Physics, 2009, 355(1): 81-84.
doi: 10.1016/j.chemphys.2008.11.008
[20] CHURCH J S, CORINO G L, WOODHEAD A L. The analysis of Merino wool cuticle and cortical cells by Fourier transform Raman spectroscopy[J]. Biopolymers, 1997, 42(1): 7-17.
pmid: 9209155
[21] KUZUHARA A, HORI T. Reduction mechanism of L-cysteine on keratin fibers using microspectrophotometry and Raman spectroscopy[J]. Biopolymers, 2005, 79(6): 324-334.
pmid: 16130128
[1] 徐志豪, 徐丹瑶, 李彦, 王璐. 基于表面增强拉曼光谱的纳米纤维基生物传感器的研究进展[J]. 纺织学报, 2023, 44(11): 216-224.
[2] 梁志结, 罗正智, 程海兵, 贾维妮, 毛庆辉. 多钒酸盐催化氧化咖啡酸及其对羊毛织物的原位染色性能[J]. 纺织学报, 2023, 44(10): 98-103.
[3] 郭玉秋, 钟毅, 徐红, 毛志平. 拼混活性染料染色多组分定量分析方法[J]. 纺织学报, 2023, 44(07): 141-150.
[4] 谭启飞, 陈梦莹, 马晟晟, 孙明祥, 代春鹏, 罗仑亭, 陈益人. 湖羊毛非织造阻燃吸声材料的制备及其性能[J]. 纺织学报, 2023, 44(05): 147-154.
[5] 蒋阳, 崔彪, 山传雷, 刘殷, 张艳红, 许长海. 天然染料染色羊毛的色域拓展及颜色预测模型[J]. 纺织学报, 2023, 44(02): 199-206.
[6] 代亚敏, 刘宏臣, 毛志平, 陆辉, 徐红, 钟毅, 周培文. 活性染料拼色轧染过程中补液模型的研究[J]. 纺织学报, 2023, 44(01): 136-141.
[7] 赵馨, 王彩霞, 周小皮, 丁雪梅. 基于岭回归方法的羊毛衫洗后特征感性评价[J]. 纺织学报, 2022, 43(07): 155-161.
[8] 孙春红, 丁广太, 方坤. 基于稀疏字典学习的羊绒与羊毛分类[J]. 纺织学报, 2022, 43(04): 28-32.
[9] 黄宏博, 韩宗保, 郭恒, 姚金波, 姜会钰, 夏治刚, 王运利. 热湿处理对免烫羊毛织物保形性能的影响[J]. 纺织学报, 2021, 42(12): 119-124.
[10] 周慧玲, 朱俐莎, 吴雄英, 丁雪梅. 电雾化处理对羊毛织物抗起毛起球性能的影响[J]. 纺织学报, 2021, 42(10): 120-125.
[11] 张帆, 张国波, 赵宇新, 张儒, 阳海, 王世豪, 汪南方. 催化氧化皂洗在涤纶/棉织物一浴染色中的应用[J]. 纺织学报, 2021, 42(09): 97-103.
[12] 王建明, 李永锋, 郝新敏, 闫金龙, 乔荣荣, 王美慧. 生物基锦纶56和锦纶66的结构与吸放湿性能评价[J]. 纺织学报, 2021, 42(08): 1-7.
[13] 潘佳俊, 夏兆鹏, 张海宝, 卢杨, 赵吉林, 王学农, 王亮, 刘雍. 牦牛绒过氧化氢/过硫酸铵脱色体系工艺优化及其机制[J]. 纺织学报, 2021, 42(04): 101-106.
[14] 袁久刚, 季吉, 薛琪, 姜哲, 范雪荣, 高卫东. 羊毛角蛋白在巯基乙酸胆碱中的溶解再生[J]. 纺织学报, 2021, 42(01): 35-39.
[15] 于佳, 辛斌杰, 卓婷婷, 周曦. 高导电性铜/聚吡咯涂层羊毛织物的制备与表征[J]. 纺织学报, 2021, 42(01): 112-117.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!