纺织学报 ›› 2024, Vol. 45 ›› Issue (12): 1-8.doi: 10.13475/j.fzxb.20231101701

• 纤维材料 •    下一篇

聚偏氟乙烯-聚丙烯腈/SiO2单向导湿纤维膜的制备及其性能

雷福旺1, 冯其2, 侯奥菡1, 赵振鸿1, 谭佳兆1, 赵景1(), 王先锋1,3   

  1. 1.五邑大学 纺织材料与工程学院, 广东 江门 529020
    2.五邑大学 应用物理与材料学院, 广东 江门 529020
    3.东华大学 纺织学院, 上海 201620
  • 收稿日期:2023-11-08 修回日期:2024-09-05 出版日期:2024-12-15 发布日期:2024-12-31
  • 通讯作者: 赵景(1989—),女,副教授,博士。主要研究方向为单向导湿微纳米纤维材料。E-mail:jingzhaoedu@126.com
  • 作者简介:雷福旺(1997—),男,硕士生。主要研究方向为静电纺单向导湿纤维材料。
  • 基金资助:
    国家自然科学基金项目(52203068);广东省自然科学基金面上项目(2024A1515012048)

Preparation and properties of polyvinylidene fluoride-polyacrylonitrile/SiO2 fibrous membrane with unidirectional water-transport function

LEI Fuwang1, FENG Qi2, HOU Aohan1, ZHAO Zhenhong1, TAN Jiazhao1, ZHAO Jing1(), WANG Xianfeng1,3   

  1. 1. College of Textile Materials and Engineering, Wuyi University, Jiangmen, Guangdong 529020, China
    2. School of Applied Physics and Materials, Wuyi University, Jiangmen, Guangdong 529020, China
    3. College of Textiles, Donghua University, Shanghai 201620, China
  • Received:2023-11-08 Revised:2024-09-05 Published:2024-12-15 Online:2024-12-31

摘要:

针对当前导湿材料的导湿性能差、穿着不舒适等问题,分别以聚偏氟乙烯(PVDF)和聚丙烯腈(PAN)/SiO2为原料,通过静电纺丝制备疏水层和具有取向结构的亲水层,并探究 PVDF 层厚度对复合纤维膜的孔径、单向导湿指数、透湿透气性能和力学性能的影响。结果表明:随着 PVDF 层纺丝时间的增加,双层纤维膜的孔径逐渐减小,当 PVDF 层的纺丝时间为3 h时,所制备的复合纤维膜的透湿率为8.7 kg/(m2·d),透气率为196.5 mm/s,拉伸断裂强度为1.4 MPa;此外,由于亲水层 PAN/SiO2 纤维高度取向,加快了水分在该层的扩散和蒸发,双层膜可在2 s内由内向外单向传输液体,单向导湿指数高达1 778.2%,具有良好的液体单向传导性能。

关键词: 功能材料, 静电纺丝, 微纳米纤维, 单向导湿, 双层复合纤维膜, 取向结构

Abstract:

Objective Existing hygroscopic and perspirant fabrics have poor moisture conductivity and insufficient wearing comfort. The essence of hygroscopic and perspirant wicking is to use the difference in the absorption of sweat between the inner and outer layers of the fabric to conduct human sweat to the outer side of the fabric and evaporate, so as to keep the surface of the skin dry. In order to meet people's demand for clothing comfort, fabrics with moisture absorption and sweat wicking function have good development prospects and high practical value. In this study, a single wet double-layer fiber membrane with polyvinylidene fluoride(PVDF) as hydrophobic layer and polyacrylonitrile(PAN) and silica as hydrophilic layer was prepared.

Method The hydrophobic PVDF layer and the hydrophilic PAN/SiO2 layer with orientation structure were prepared by electrospinning technology according to the single guided wetting mechanism of the fiber membrane. The double-layer composite fiber membrane has pore size gradient structure and surface wettability gradient structure. The pore size gradient was constructed by adjusting the thickness of PVDF layer, and the relationship between the thickness and the single moisture index, moisture permeability and mechanical properties of the double-layer composite fiber membrane was analyzed.

Results The spinning time of PVDF layer was adjusted to 2.0,2.5,3.0 and 3.5 h respectively, and the corresponding fiber membrane thickness was 295.1, 305.8, 314.7 and 324.5 μm, respectively, which showed a positive correlation with the spinning time. With the increase of the spinning time of the PVDF layer, the pore size of the hydrophobic layer was decreased and the distribution range of the pore size were narrowed gradually, while the pore size of the hydrophilic layer became much smaller than that of the hydrophilic layer, thus constructing a gradient structure from the hydrophobic layer to the hydrophilic layer. PVDF layer spinning time of 3.0 h showed the best wetting effect, where water was able to penetrate the fiber membrane within 2 s, and the unidirectional transfer index reached 1 778.2%. With the increase of PVDF layer spinning time, the positive AOTC(accumulative one-way transport index) increased from 1 259.6% to 1 778.2%. Therefore, the increase in the thickness of the PVDF layer led to the improvement of the directional transport performance of the liquid. However, when the spinning time of PVDF layer increased from 3.0 h to 3.5 h, AOTC was decreased from 1 778.2% to 1 204.2%, further indicating that Janus membrane with appropriate thickness was more likely to achieve better unidirectional liquid conductivity. Further, the water pressure resistance of the fiber membrane was tested. The positive and negative water pressure resistance of the composite fiber membrane with different PVDF spinning time was significantly different. The positive water pressure resistance was always lower than that of the reverse water pressure, and the water pressure difference showed an increasing trend with the increase of the spinning time of the PVDF layer fiber membrane. The hydrophilic layer with orientation structure showed a core suction height of 10 cm in 10 min, which provides good reverse osmosis performance for the fiber membrane. In addition, when the spinning time of PVDF is 3.0 h, the fiber membrane also has good moisture permeability and air permeability, with the moisture permeability reaching 8.7 kg/(m2·d), and the air permeability is 196.5 mm/s.

Conclusion In this study, PVDF-PAN/SiO2 double-layer composite micro-nano fiber membrane containing oriented hydrophilic layer was prepared by electrospinning technology, and the effects of PVDF layer thickness on the pore size, single wizard moisture index, moisture permeability and mechanical properties of the composite fiber membrane were investigated. The results show that when the spinning time of PVDF layer is 3.0 h, the fiber membrane has the best single wet performance, and the unidirectional transfer index can reach 1 778.2%. In addition, the fiber membrane has good moisture permeability (8.7 kg/(m2·d)) and excellent air permea-bility (196.5 mm/s). The composite membrane can absorb human sweat and quickly conduct it to the outer layer of the fiber membrane within 2 s, which is much better than the existing single guide wet fiber materials. The double-layer composite fiber membrane prepared in this paper has a broad application prospect in the fields of hygroscopic and perspiratory textiles and medical and health textiles.

Key words: functional material, electrospinning, micro-nano fiber, single guide wet, double-layer composite, fiber membrane, oriented structure

中图分类号: 

  • TS540.20

图1

双层复合纤维膜的 SEM 照片"

图2

亲疏水层的孔径分布曲线"

图3

双层复合纤维膜的红外光谱图"

图4

亲水层和不同纺丝时间的 PVDF 层的接触角以及亲水层的芯吸高度"

图5

不同纺丝时间PVDF制备的双层复合纤维膜的正、反向耐静水压"

图6

不同 PVDF 纺丝时间的双层复合纤维膜的液态水分管理曲线"

图7

液体传导图"

表1

复合纤维膜的透湿率和透气率"

PVDF纺丝时间/h 透湿率/(kg·m-2·d-1) 透气率/(mm·s-1)
2.0 11.6 231.0
2.5 9.9 220.1
3.0 8.7 196.5
3.5 7.3 161.0

图8

复合纤维膜的应力-应变曲线"

图9

复合纤维膜实物图"

[1] YUE Z, XING L, HONG Y W, et al. Highly breathable and abrasion-resistant membranes with micro-nano-channels for eco-friendly moisture wicking medical textiles[J]. Nanomaterials, 2022. DOI:10.3390/nano12173071.
[2] YAN W, MIAO D, BABAR A A, et al. Multi-scaled interconnected inter-and intra-fiber porous Janus membranes for enhanced directional moisture trans-port[J]. Journal of Colloid and Interface Science, 2020, 565: 426-435.
[3] MAMUN M S K, MABABUB M H, AKM A M. Investigating the functional and comfort properties of a face mask based on a cool-max blended cotton fabric[J]. Fibers & Textiles in Eastern Europe, 2022, 30(3): 102-110.
[4] 孙浪涛, 李建华, 何小玲, 等. Cool-max/棉混纺织物的吸湿速干性分析[J]. 中原工学院学报, 2022, 33(1): 1-5.
SUN Langtao, LI Jianhua, HE Xiaoling, et al. Analysis of moisture absorption and quick drying of Coolmax/cotton blended fabric[J]. Journal of Zhongyuan University of Technology, 2022, 33(1): 1-5.
[5] 铃木东义, 孙付霞. 聚酯多孔中空截面纤维“WELLKEY”[J]. 国外纺织技术, 2001(10): 14-15.
SUZUKI Toyoshi, SUN Fuxia. Polyester porous hollow section fiber "WELLKEY"[J]. Textile Technology Overseas, 2001(10): 14-15.
[6] 刘杰, 王府梅. 单向导湿机织物结构设计[J]. 纺织学报, 2018, 39(3): 50-55.
LIU Jie, WANG Fumei. Structural design of unidirectional wet woven fabric[J]. Journal of Textile Research, 2018, 39(3): 50-55.
[7] CAO M, LI K, DONG Z, et al. Superhydrophobic "pump": continuous and spontaneous antigravity water delivery[J]. Advanced Functional Materials, 2015, 25(26): 4114-4119.
[8] HUANG G, LIANG Y, WANG J, et al. Effect of asymmetric wettability on directional transport of water through Janus fabrics prepared by an electrospinning technique[J]. Materials Letters, 2019, 246: 76-79.
[9] 王洪杰, 胡忠文, 王赫, 等. 单向导湿纺织品及其应用的研究进展[J]. 纺织学报, 2022, 43(11): 195-202.
WANG Hongjie, HU Zhongwen, WANG He, et al. Research progress of unidirectional wet textiles andtheir application[J]. Journal of Textile Research, 2022, 43(11): 195-202.
[10] 张慧茹, 董继红. 湿热舒适功能纺织品[J]. 合成纤维, 2010, 39(3): 9-12.
ZHANG Huiru, DONG Jihong. Functional textiles for moist heat comfort[J]. Synthetic Fiber in China, 2010, 39(3): 9-12.
[11] CERATTI D R, FANUSTINI M, SINTUREL C, et al. Critical effect of pore characteristics on capillary infiltration in mesoporous films[J]. Nanoscale, 2015, 7(12): 5371-5382.
[12] 王伟, 黄晨, 靳向煜. 单向导湿织物的研究现状及进展[J]. 纺织学报, 2016, 37(5): 167-172.
WANG Wei, HUANG Chen, JIN Xiangyu. Research st-atus and progress of unidirectional wet fabrics[J]. Journal of Textile Research, 2016, 37(5): 167-172.
[13] GONG X, JIN C, LIU X Y, et al. Scalable fabrication of electrospun true-nanoscale fiber membranes for effective selective separation[J]. Nano Letters, 2023, 23(3): 1044-1051.
[14] MIAO D, CHENG N, WANG X, et al. Integration of janus wettability and heat conduction in hierarchically designed textiles for all-day personal radiative cooling[J]. Nano Letters, 2022, 22(2): 680-687.
[15] ZHAO J, ZHU W, YAN W, et al. Tailoring waterproof and breathable properties of environmentally friendly electrospun fibrous membranes by optimizing porous structure and surface wettability[J]. Composites Communications, 2019, 15: 40-45.
[16] DONG Y, KONG J, MU C, et al. Materials design towards sport textiles with low-friction and moisture-wicking dual functions[J]. Materials & Design, 2015, 88: 82-87.
[17] SHAO Z, WANG Q, CHEN J, et al. Directional water transport janus composite nanofiber membranes for comfortable bioprotection[J]. Langmuir, 2021, 38(1): 309-319.
[18] WANG X, HUANG Z, MIAO D, et al. Biomimetic fibrous murray membranes with ultrafast water transport and evaporation for smart moisture-wicking fabrics[J]. ACS Nano, 2018, 13(2): 1060-1070.
[19] MIAO D, HUANG Z, WANG X, et al. Continuous, spontaneous, and directional water transport in the trilayere-d fibrous membranes for functional moisture wicking textiles[J]. Small, 2018. DOI:10.1002/smll.201801527.
[20] 郝习波, 李辉芹, 巩继贤, 等. 单向导湿功能纺织品的研究进展[J]. 纺织学报, 2015, 36(7): 157-161.
HAO Xibo, LI Huiqin, GONG Jixian, et al. Review on unidirectional water transport functional fab-rics[J]. Journal of Textile Research, 2015, 36(7): 157-161.
[1] 刘霞, 吴改红, 闫子豪, 王彩柳. 智能相变调温聚乳酸纤维膜的制备及其性能[J]. 纺织学报, 2024, 45(12): 18-24.
[2] 王雅文, 刘娜, 王元非, 吴桐. 静电纺纳米纤维纱线及其对细胞迁移和血管化的调控[J]. 纺织学报, 2024, 45(12): 25-32.
[3] 卢海龙, 于影, 左雨欣, 王浩然, 陈洪立, 汝欣. 取向增强抗CO2腐蚀纤维薄膜的制备及其性能[J]. 纺织学报, 2024, 45(12): 33-40.
[4] 刘健, 董守骏, 王程皓, 刘泳汝, 潘山山, 尹兆松. 花瓣状多尖端静电纺丝喷头的电场模拟及优化[J]. 纺织学报, 2024, 45(10): 191-199.
[5] 张佃平, 王昊, 林文峰, 王振秋. 多喷头纺丝装置的仿真与设计[J]. 纺织学报, 2024, 45(10): 200-207.
[6] 房磊, 刘秀明, 贾娇娇, 蔺志浩, 任燕飞, 侯凯文, 巩继贤, 扈延龄. 高分子量壳聚糖皮芯结构微纳米纤维膜制备[J]. 纺织学报, 2024, 45(09): 1-9.
[7] 蔺志浩, 房磊, 贾娇娇, 扈延龄, 房宽峻. 负载生长因子的微纳米纤维创面敷料的制备与应用研究进展[J]. 纺织学报, 2024, 45(09): 244-251.
[8] 王浩然, 于影, 左雨欣, 顾志清, 卢海龙, 陈洪立, 柯俊. 聚乙烯亚胺/聚丙烯腈复合纤维薄膜的制备及其功能化应用[J]. 纺织学报, 2024, 45(09): 26-32.
[9] 王清鹏, 张海艳, 王雨婷, 张涛, 赵燕. 聚环氧乙烷/Al2O3被动辐射降温膜的制备及其性能[J]. 纺织学报, 2024, 45(09): 33-41.
[10] 钱洋, 张璐, 李晨阳, 王荣武. 静电纺海藻酸钠复合纳米纤维膜制备及其性能[J]. 纺织学报, 2024, 45(08): 18-25.
[11] 刘嘉炜, 季东晓, 覃小红. 空气过滤用静电纺纳米纤维材料研究进展[J]. 纺织学报, 2024, 45(08): 35-43.
[12] 刘德龙, 王红霞, 林童. 气流辅助的静电纺丝技术研究进展[J]. 纺织学报, 2024, 45(08): 44-53.
[13] 杨培芹, 潘志娟. 丁香酚/桑皮微纳米纤维膜的制备及其性能[J]. 纺织学报, 2024, 45(08): 72-80.
[14] 杨硕, 赵朋举, 程春祖, 李晨暘, 程博闻. 非对称润湿性纤维复合膜的制备及其油水分离性能[J]. 纺织学报, 2024, 45(08): 10-17.
[15] 王永政, 黄林涛, 宋付权. 石油沥青/聚丙烯腈静电纺碳纳米纤维的制备工艺优化及其性能[J]. 纺织学报, 2024, 45(08): 107-115.
Viewed
Full text
146
HTML PDF
Just accepted Online first Issue Just accepted Online first Issue
0 0 29 0 0 117

  From Others local
  Times 24 122
  Rate 16% 84%

Abstract
Just accepted Online first Issue
0 0 199

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!