纺织学报 ›› 2024, Vol. 45 ›› Issue (12): 1-8.doi: 10.13475/j.fzxb.20231101701
• 纤维材料 • 下一篇
雷福旺1, 冯其2, 侯奥菡1, 赵振鸿1, 谭佳兆1, 赵景1(), 王先锋1,3
LEI Fuwang1, FENG Qi2, HOU Aohan1, ZHAO Zhenhong1, TAN Jiazhao1, ZHAO Jing1(), WANG Xianfeng1,3
摘要:
针对当前导湿材料的导湿性能差、穿着不舒适等问题,分别以聚偏氟乙烯(PVDF)和聚丙烯腈(PAN)/SiO2为原料,通过静电纺丝制备疏水层和具有取向结构的亲水层,并探究 PVDF 层厚度对复合纤维膜的孔径、单向导湿指数、透湿透气性能和力学性能的影响。结果表明:随着 PVDF 层纺丝时间的增加,双层纤维膜的孔径逐渐减小,当 PVDF 层的纺丝时间为3 h时,所制备的复合纤维膜的透湿率为8.7 kg/(m2·d),透气率为196.5 mm/s,拉伸断裂强度为1.4 MPa;此外,由于亲水层 PAN/SiO2 纤维高度取向,加快了水分在该层的扩散和蒸发,双层膜可在2 s内由内向外单向传输液体,单向导湿指数高达1 778.2%,具有良好的液体单向传导性能。
中图分类号:
[1] | YUE Z, XING L, HONG Y W, et al. Highly breathable and abrasion-resistant membranes with micro-nano-channels for eco-friendly moisture wicking medical textiles[J]. Nanomaterials, 2022. DOI:10.3390/nano12173071. |
[2] | YAN W, MIAO D, BABAR A A, et al. Multi-scaled interconnected inter-and intra-fiber porous Janus membranes for enhanced directional moisture trans-port[J]. Journal of Colloid and Interface Science, 2020, 565: 426-435. |
[3] | MAMUN M S K, MABABUB M H, AKM A M. Investigating the functional and comfort properties of a face mask based on a cool-max blended cotton fabric[J]. Fibers & Textiles in Eastern Europe, 2022, 30(3): 102-110. |
[4] | 孙浪涛, 李建华, 何小玲, 等. Cool-max/棉混纺织物的吸湿速干性分析[J]. 中原工学院学报, 2022, 33(1): 1-5. |
SUN Langtao, LI Jianhua, HE Xiaoling, et al. Analysis of moisture absorption and quick drying of Coolmax/cotton blended fabric[J]. Journal of Zhongyuan University of Technology, 2022, 33(1): 1-5. | |
[5] | 铃木东义, 孙付霞. 聚酯多孔中空截面纤维“WELLKEY”[J]. 国外纺织技术, 2001(10): 14-15. |
SUZUKI Toyoshi, SUN Fuxia. Polyester porous hollow section fiber "WELLKEY"[J]. Textile Technology Overseas, 2001(10): 14-15. | |
[6] | 刘杰, 王府梅. 单向导湿机织物结构设计[J]. 纺织学报, 2018, 39(3): 50-55. |
LIU Jie, WANG Fumei. Structural design of unidirectional wet woven fabric[J]. Journal of Textile Research, 2018, 39(3): 50-55. | |
[7] | CAO M, LI K, DONG Z, et al. Superhydrophobic "pump": continuous and spontaneous antigravity water delivery[J]. Advanced Functional Materials, 2015, 25(26): 4114-4119. |
[8] | HUANG G, LIANG Y, WANG J, et al. Effect of asymmetric wettability on directional transport of water through Janus fabrics prepared by an electrospinning technique[J]. Materials Letters, 2019, 246: 76-79. |
[9] | 王洪杰, 胡忠文, 王赫, 等. 单向导湿纺织品及其应用的研究进展[J]. 纺织学报, 2022, 43(11): 195-202. |
WANG Hongjie, HU Zhongwen, WANG He, et al. Research progress of unidirectional wet textiles andtheir application[J]. Journal of Textile Research, 2022, 43(11): 195-202. | |
[10] | 张慧茹, 董继红. 湿热舒适功能纺织品[J]. 合成纤维, 2010, 39(3): 9-12. |
ZHANG Huiru, DONG Jihong. Functional textiles for moist heat comfort[J]. Synthetic Fiber in China, 2010, 39(3): 9-12. | |
[11] | CERATTI D R, FANUSTINI M, SINTUREL C, et al. Critical effect of pore characteristics on capillary infiltration in mesoporous films[J]. Nanoscale, 2015, 7(12): 5371-5382. |
[12] | 王伟, 黄晨, 靳向煜. 单向导湿织物的研究现状及进展[J]. 纺织学报, 2016, 37(5): 167-172. |
WANG Wei, HUANG Chen, JIN Xiangyu. Research st-atus and progress of unidirectional wet fabrics[J]. Journal of Textile Research, 2016, 37(5): 167-172. | |
[13] | GONG X, JIN C, LIU X Y, et al. Scalable fabrication of electrospun true-nanoscale fiber membranes for effective selective separation[J]. Nano Letters, 2023, 23(3): 1044-1051. |
[14] | MIAO D, CHENG N, WANG X, et al. Integration of janus wettability and heat conduction in hierarchically designed textiles for all-day personal radiative cooling[J]. Nano Letters, 2022, 22(2): 680-687. |
[15] | ZHAO J, ZHU W, YAN W, et al. Tailoring waterproof and breathable properties of environmentally friendly electrospun fibrous membranes by optimizing porous structure and surface wettability[J]. Composites Communications, 2019, 15: 40-45. |
[16] | DONG Y, KONG J, MU C, et al. Materials design towards sport textiles with low-friction and moisture-wicking dual functions[J]. Materials & Design, 2015, 88: 82-87. |
[17] | SHAO Z, WANG Q, CHEN J, et al. Directional water transport janus composite nanofiber membranes for comfortable bioprotection[J]. Langmuir, 2021, 38(1): 309-319. |
[18] | WANG X, HUANG Z, MIAO D, et al. Biomimetic fibrous murray membranes with ultrafast water transport and evaporation for smart moisture-wicking fabrics[J]. ACS Nano, 2018, 13(2): 1060-1070. |
[19] | MIAO D, HUANG Z, WANG X, et al. Continuous, spontaneous, and directional water transport in the trilayere-d fibrous membranes for functional moisture wicking textiles[J]. Small, 2018. DOI:10.1002/smll.201801527. |
[20] | 郝习波, 李辉芹, 巩继贤, 等. 单向导湿功能纺织品的研究进展[J]. 纺织学报, 2015, 36(7): 157-161. |
HAO Xibo, LI Huiqin, GONG Jixian, et al. Review on unidirectional water transport functional fab-rics[J]. Journal of Textile Research, 2015, 36(7): 157-161. |
[1] | 刘霞, 吴改红, 闫子豪, 王彩柳. 智能相变调温聚乳酸纤维膜的制备及其性能[J]. 纺织学报, 2024, 45(12): 18-24. |
[2] | 王雅文, 刘娜, 王元非, 吴桐. 静电纺纳米纤维纱线及其对细胞迁移和血管化的调控[J]. 纺织学报, 2024, 45(12): 25-32. |
[3] | 卢海龙, 于影, 左雨欣, 王浩然, 陈洪立, 汝欣. 取向增强抗CO2腐蚀纤维薄膜的制备及其性能[J]. 纺织学报, 2024, 45(12): 33-40. |
[4] | 刘健, 董守骏, 王程皓, 刘泳汝, 潘山山, 尹兆松. 花瓣状多尖端静电纺丝喷头的电场模拟及优化[J]. 纺织学报, 2024, 45(10): 191-199. |
[5] | 张佃平, 王昊, 林文峰, 王振秋. 多喷头纺丝装置的仿真与设计[J]. 纺织学报, 2024, 45(10): 200-207. |
[6] | 房磊, 刘秀明, 贾娇娇, 蔺志浩, 任燕飞, 侯凯文, 巩继贤, 扈延龄. 高分子量壳聚糖皮芯结构微纳米纤维膜制备[J]. 纺织学报, 2024, 45(09): 1-9. |
[7] | 蔺志浩, 房磊, 贾娇娇, 扈延龄, 房宽峻. 负载生长因子的微纳米纤维创面敷料的制备与应用研究进展[J]. 纺织学报, 2024, 45(09): 244-251. |
[8] | 王浩然, 于影, 左雨欣, 顾志清, 卢海龙, 陈洪立, 柯俊. 聚乙烯亚胺/聚丙烯腈复合纤维薄膜的制备及其功能化应用[J]. 纺织学报, 2024, 45(09): 26-32. |
[9] | 王清鹏, 张海艳, 王雨婷, 张涛, 赵燕. 聚环氧乙烷/Al2O3被动辐射降温膜的制备及其性能[J]. 纺织学报, 2024, 45(09): 33-41. |
[10] | 钱洋, 张璐, 李晨阳, 王荣武. 静电纺海藻酸钠复合纳米纤维膜制备及其性能[J]. 纺织学报, 2024, 45(08): 18-25. |
[11] | 刘嘉炜, 季东晓, 覃小红. 空气过滤用静电纺纳米纤维材料研究进展[J]. 纺织学报, 2024, 45(08): 35-43. |
[12] | 刘德龙, 王红霞, 林童. 气流辅助的静电纺丝技术研究进展[J]. 纺织学报, 2024, 45(08): 44-53. |
[13] | 杨培芹, 潘志娟. 丁香酚/桑皮微纳米纤维膜的制备及其性能[J]. 纺织学报, 2024, 45(08): 72-80. |
[14] | 杨硕, 赵朋举, 程春祖, 李晨暘, 程博闻. 非对称润湿性纤维复合膜的制备及其油水分离性能[J]. 纺织学报, 2024, 45(08): 10-17. |
[15] | 王永政, 黄林涛, 宋付权. 石油沥青/聚丙烯腈静电纺碳纳米纤维的制备工艺优化及其性能[J]. 纺织学报, 2024, 45(08): 107-115. |
|