纺织学报 ›› 2024, Vol. 45 ›› Issue (10): 128-136.doi: 10.13475/j.fzxb.20231102501

• 染整工程 • 上一篇    下一篇

苯并[a]吩恶嗪基功能染料制备及其在改性涤纶织物上的应用

韩画宇1, 杨文龙2, 王甫1, 胡柳1,3(), 胡毅1   

  1. 1.浙江理工大学 纺织科学与工程学院, 浙江 杭州 310018
    2.浙江盛发纺织印染有限公司, 浙江 湖州 313100
    3.东华大学 化学与化工学院, 上海 201620
  • 收稿日期:2023-11-14 修回日期:2024-06-18 出版日期:2024-10-15 发布日期:2024-10-22
  • 通讯作者: 胡柳(1993―),女,讲师,博士。主要研究方向为新型染料的开发及应用。E-mail:liuhuhl@zstu.edu.cn
  • 作者简介:韩画宇(2000―),男,硕士生。主要研究方向为光功能纺织品。
  • 基金资助:
    国家自然科学基金项目(22208310);中国博士后科学基金第74批面上资助项目(2023M743129)

Preparation of benzo[a]phenoxazine based functional dyes and their application on modified polyester fabrics

HAN Huayu1, YANG Wenlong2, WANG Fu1, HU Liu1,3(), HU Yi1   

  1. 1. College of Textile Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, China
    2. Zhejiang Shengfa Textile Printing and Dyeing Co., Ltd., Huzhou, Zhejiang 313100, China
    3. College of Chemistry and Chemical Engineering, Donghua University, Shanghai 201620, China
  • Received:2023-11-14 Revised:2024-06-18 Published:2024-10-15 Online:2024-10-22

摘要:

为通过简单的方法赋予阳离子可染改性涤纶织物功能性,合成了新型光功能性苯并[a]吩恶嗪基阳离子染料,将其应用于阳离子可染改性涤纶织物的染色,使染色织物兼具功能性。首先合成了5-二乙氨基-2-亚硝基苯酚盐酸盐中间体,进一步与盐酸萘乙二胺或N-丙基-1-萘胺经亲核取代反应,制备了5-乙二氨基-9-(二乙氨基)苯并[a]吩恶嗪氯化铵(N1)和5-丙氨基-9-(二乙氨基)苯并[a]吩恶嗪氯化铵(N2)2种染料。选取5-氨基-9-(二乙氨基)苯并[a]吩恶嗪硫酸铵(硫酸耐尔蓝,N3)作对比,探究3种染料的光物理化学性质及其对阳离子可染改性涤纶织物的染色性能,研究染色织物的荧光和光动力性能。结果表明:分子末端为丙氨基的染料N2对织物的上染率极高(99.65%),染色织物具有较好的匀染性,呈现强红色荧光,且各项色牢度均达到4~5级;3种染料染色织物均具有光驱动活性氧产生能力。

关键词: 染色, 苯并[a]吩恶嗪, 功能染料, 阳离子可染改性涤纶, 荧光, 光动力

Abstract:

Objective Functionally modified polyester textiles with high added value have significant development value in the fields of both domestic and industrial textiles. Cationic dyeable modified polyester fabrics are often endowed with enhanced functionality by coating and cross-linking with polymers. However, these modifications can compromise their breathability and adversely affect their apparent color and luster. This study aims to synthesize a novel photo-functional benzo[a]phenoxazine cationic dye, aim to achieve an integrated construction of both color and functionality on cationic dyeable modified polyester fabrics via a streamlined dyeing process.

Method Two dyes, 5-ethylenediamino-9-(diethylamino)benzo[a]phenoxazine ammonium chloride (N1) and 5-propylamino-9-(diethylamino)benzo[a]phenoxazine ammonium chloride (N2), were synthesized via nucleophilic substitution reactions. The structural characterizations of these dyes were accomplished using proton nuclear magnetic resonance (1H NMR) spectroscopy and Fourier transform infrared (FT-IR) spectroscopy. Additionally, 5-amino-9-(diethylamino)benzo[a]phenoxazine ammonium sulfate (Nile Blue sulfate, N3) was selected as the comparative dye. The photophysical and chemical properties of these dyes, along with their dyeing performance on cationic dyeable modified polyester fabrics, were investigated using a color matching instrument, UV-visible spectrophotometer, and fluorescence spectrophotometer. The fluorescence emission and photodynamic properties of the dyed fabrics were also examined.

Results This study was focused on two photo-functional benzo[a]phenoxazine cationic dyes for dyeing cationic dyeable modified polyester fabrics.1H NMR and FT-IR confirmed the successful synthesis of 5-ethylenediamino-9-(diethylamino)benzo[a]phenoxazine ammonium chloride (N1) and 5-propylamino-9-(diethylamino)benzo[a]phenoxazine ammonium chloride (N2). The maximum absorption wavelengths (λmax) of the three dyes in water were 648 nm, 639 nm, and 635 nm, respectively, presenting a blue color. In DMF, both λmax and the maximum emission wavelengths (λem) of the three dyes exhibited a blue shift, with the solution color changing from blue to red and displaying orange-yellow fluorescence under a 365 nm ultraviolet lamp, which may be caused by the molecular deprotonation. Dye N2, with a propyl amino group at the 5-position, achieved a dye-uptake of 99.65% on cationic dyeable modified polyester fabric, demonstrating rapid dye uptake with good levelness. The a*(green-red axis) and b*(blue-yellow axis) values of the fabrics dyed with these dyes were all negative, while the lightness (L*) values were positive, indicating that the dyed fabric exhibited a bright blue with a greenish tint. Due to the enhanced π-π* transition caused by the propyl amino group in dye N2, fabric dyed with 1% (o.w.f) dosage exhibited strong red fluorescence, while the increasing dye dosage led to fluorescence self-quenching on the fabric. The photodynamic properties of the dyed fabrics were investigated. The bleaching rate of 1,3-diphenylisobenzofuran on fabric dyed with N3 (6%, o.w.f) reached over 80% after 40 min of red-light exposure. Under the same condition, the bleaching rate for fabric dyed with N1 was 63.5%, demonstrating that these dyed fabrics have the ability of photoinduced singlet oxygen generation. Additionally, color fastness tests indicated that the fabrics dyed with these three dyes (1%, o.w.f) achieved excellent rubbing and washing fastness which is over level 4, and the light fastness were in the range of levels 3 to 4.

Conclusion In this work, two benzo[a]phenoxazine-based functional dyes (N1 and N2) were developed and characterized. N1 and N2 exhibit solvatochromic behaviors, and they have excellent dyeing performance on cationic dyeable modified polyester fabrics with high dye-uptake rate and good color fastness. The dyed fabrics show red fluorescence emission and photodynamic1O2 generation ability. Dye N1 with an ethylenediamine group at the 5-position has better photodynamic1O2 generation performance than the dye N2. This offers a novel approach to the development of multicolor textiles for health and safety protection. In future research on benzo[a]phenoxazine cationic dyes, further modulation of molecular structure could enhance the photodynamic generation of reactive oxygen species by the dyes and the antibacterial activity of the dyed fabrics, thereby enriching the color palette and functional versatility of health protection textiles.

Key words: dyeing, benzo[a]phenoxazine, functional dye, cationic dyeable modified polyester, fluorescence, photodynamic

中图分类号: 

  • TQ614.2

图1

化合物的合成路线"

图2

DPBF氧化分解示意图"

图3

N1、N2、N3在溶剂中的光谱图 注:右上方插图依次为染料在H2O、DMF、EA、DCM、EtOH中的荧光图像。"

表1

染料在不同溶剂中的光谱数据"

染料 溶剂 λmax/
nm
λem/
nm
斯托克
斯位移/
nm
ε/
(L·mol-1·cm-1)
H2O 648 682 34 25 375.36
DMF 511 605 94 18 080.56
N1 EA 503 585 82 11 707.32
DCM 645 665 20 28 666.91
EtOH 640 671 31 19 292.52
H2O 639 679 40 17 090.54
DMF 507 602 100 10 492.96
N2 EA 494 584 90 12 935.74
DCM 633 661 25 26 726.78
EtOH 636 668 32 24 237.17
H2O 635 679 44 55 997.14
DMF 505 593 88 46 637.15
N3 EA 496 579 83 20 486.69
DCM 629 659 30 30 607.09
EtOH 627 667 40 99 586.79

图4

染料N1、N2、N3的上染速率曲线"

图5

染料用量对织物K/S值的影响"

表2

染料染色阳离子可染改性涤纶的颜色参数"

染料 K/S λmax/nm L* a* b* Sr
N1 17.23 640 40.95 -15.09 -30.26 0.022
N2 15.34 640 45.85 -22.77 -22.72 0.011
N3 22.12 640 32.32 -11.34 -32.92 0.017

图6

染色织物的荧光发射光谱和荧光照片"

图7

光驱动下染色织物对DPBF的漂白率"

图8

染色织物的光动力作用示意图"

表3

染色织物的色牢度"

染料
编号
耐摩擦
色牢度
耐洗色牢度 耐光
色牢度
湿 变色 沾色
羊毛 腈纶 涤纶 锦纶 醋酯
N1 4~5 4~5 4~5 4~5 4~5 4~5 4 4~5 4~5 3~4
N2 4~5 4~5 4~5 4~5 4~5 4~5 4~5 4~5 4~5 4~5
N3 4 4 4~5 4~5 4~5 4~5 4 4~5 4~5 3~4
[1] 张淑军, 李刚, 张鸿, 等. 阳离子染料可染改性涤纶及其面料的研究进展[J]. 现代纺织技术, 2021, 29(4):115-120.
ZHANG Shujun, LI Gang, ZHANG Hong, et al. Research progress on cationic dye modified polyester and its fabric[J]. Advanced Textile Technology, 2021, 29(4):115-120.
[2] 杨肖婉, 王建明, 张大省. 阳离子染料常压可染新型改性涤纶的热性能及染色性能[J]. 纺织学报, 2016, 37(12):71-75.
YANG Xiaowan, WANG Jianming, ZHANG Dasheng. Thermal and dyeing properties of novel cationic-dyeable polyester fabrics under atmospheric pressure[J]. Journal of Textile Research, 2016, 37(12):71-75.
[3] 曲连艺, 刘江龙, 徐英俊, 等. 仿贻贝型耐久抗菌织物的制备及其性能[J]. 纺织学报, 2023, 44(2):176-183.
QU Lianyi, LIU Jianglong, XU Yingjun, et al. Preparation and properties of mussel-inspired durable antimicrobial fabrics[J]. Journal of Textile Research, 2023, 44(2):176-183.
[4] 李亮, 刘静芳, 胡泽栋, 等. 涤纶织物的氧化石墨烯负载及其抗静电性能[J]. 纺织学报, 2020, 41(9):102-107.
LI Liang, LIU Jingfang, HU Zedong, et al. Graphene oxide loading on polyester fabrics and antistatic properties[J]. Journal of Textile Research, 2020, 41(9):102-107.
[5] GAO D, WANG F, LYU B, et al. Multifunctional cotton fabric with durable antibacterial, superhydrophobicity, and UV resistance based on Ag@TiO2 Janus[J]. Cellulose, 2024, 31:2617-2633.
[6] LYU B, OUYANG Y, GAO D, et al. Antibacterial cotton fabric with fluorescent properties based on bismuth-based perovskite quantum dots with silica coating[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2024. DOI:10.1016/j.colsurfa.2024.134153.
[7] ALLEHYANI E S. Surface functionalization of polyester textiles for antibacterial and antioxidant properties[J]. Polymers, 2022. DOI:10.3390/polym14245512.
[8] DAVODIROKNABADI A. Modification of polyester fabrics with Zn2SnO4 nanorods for superior self-cleaning, UV-protection and antibacterial performance[J]. Journal of The Textile Institute, 2022, 114(8):1091-1098.
[9] QIU Y, WANG L, XU L, et al. Shaped-controlled growth of sphere-like ZnO on modified polyester fabric in water bath[J]. Materials Letters, 2021. DOI:10.1016/j.matlet.2021.129342.
[10] PETKOVSKA J, MLADENOVIC N, MARKOVIĆ D,et al. Environmentally benign few-bilayer intumescent nanocoating for flame retardant enzyme/plasma modified polyester fabric[J]. Polymer Degradation and Stability,2023. DOI:10.1016/j.polymdegradstab.2023.110406.
[11] 张华, 吴晓雪, 高爱芹, 等. 荧光抗菌染料的制备及其在改性涤纶面料上的应用[J]. 印染, 2022, 48(9):1-6.
ZHANG Hua, WU Xiaoxue, GAO Aiqin, et al. Synthesis of fluorescent antibacterial dyes and their applications on modified polyester fabric[J]. China Dyeing & Finishing, 2022, 48(9):1-6.
[12] 张明浩. 锦纶织物的荧光染色性能及其功能性整理[D]. 上海: 东华大学, 2020:13-27.
ZHANG Minghao. Fluorescent dyeing and functional finishing of nylon fabric[D]. Shanghai: Donghua University, 2021:13-27.
[13] PISHGAR M, GHARANJIG K, YAZDANSHENAS M E, et al. Dyeing of cotton fabrics with novel fluorescent reactive dyes based on fluorescein: dyeing and fluorescent properties, adsorption isotherms, and kinetic studies[J]. Journal of Natural Fibers, 2022, 19(16):12504-12521.
[14] 秦传香, 鲍志敏, 戴礼兴, 等. 新型萘酰亚胺类荧光染料的合成及其染色应用[J]. 纺织学报, 2018, 39(7):74-81,88.
QIN Chuanxiang, BAO Zhimin, DAI Lixing, et al. Synthesis and dyeing properties of novel fluorescent dyes based on naphthalimide[J]. Journal of Textile Research, 2018, 39(7):74-81,88.
[15] LOPES M, ALVES C T, RAMA R B, et al. Application of benzo[a]phenoxazinium chlorides in antimicrobial photodynamic therapy of candida albicans biofilms[J]. Journal of Photochemistry and Photobiology B:Biology, 2014, 141:93-99.
[16] FERREIRA J C C, SOUSA R P C L, PRETO A, et al. Novel benzo[a]phenoxazinium chlorides functionalized with sulfonamide groups as NIR fluorescent probes for vacuole, endoplasmic reticulum, and plasma membrane staining[J]. International Journal of Molecular Sciences, 2023. DOI:10.3390/ijms24033006.
[17] FERREIRA J C C, GRANJA S, ALMEIDA A F, et al. Targeting lysosomes in colorectal cancer: exploring the anticancer activity of a new benzo[a]phenoxazine derivative[J]. International Journal of Molecular Sciences, 2023. DOI:10.3390/ijms24010614.
[18] MADEA D, MARTÍNEK M, MUCHOVÁ L, et al. Structural modifications of nile red carbon monoxide fluorescent probe: sensing mechanism and applications[J]. The Journal of Organic Chemistry, 2020, 85(5):3473-3489.
[19] 万慧. 低匀染蓝色杂环分散染料的染色性能与改进策略研究[D]. 杭州: 浙江理工大学, 2023:10-22.
WAN Hui. Study on dyeing properties and improvement strategies of low level dyeing blue heterocyclic disperse dyes[D]. Hangzhou: Zhejiang Sci-Tech University, 2023:10-22.
[20] MENSAH A, CHEN Y, ASINYO B K, et al. Singlet oxygen (1O2) induced photodynamic inactivation of bacterials with bioactive Icariin/beta-cyclodextrin/bacterial cellulose[J]. Polymer Testing, 2022. DOI:10.1016/j.polymertesting.2022.107600.
[21] PHAM T C, NGUYEN V N, CHOI Y H, et al. Recent strategies to develop innovative photosensitizers for enhanced photodynamic therapy[J]. Chemical Reviews, 2021, 121(21):13454-13619.
doi: 10.1021/acs.chemrev.1c00381 pmid: 34582186
[1] 史芷丞, 张玉, 于鸿, 马桂玲, 陈凤翔, 徐卫林. 仿生结构生色技术及其在纺织领域应用的研究进展[J]. 纺织学报, 2024, 45(08): 241-249.
[2] 吕子豪, 徐慧慧, 袁小红, 王清清, 魏取福. 光动力抗菌水刺棉的染整一体化制备及其性能[J]. 纺织学报, 2024, 45(08): 26-34.
[3] 黄连香, 王祥荣, 侯学妮, 钱琴芳. 茜草色素对生物基聚酰胺56的染色性能[J]. 纺织学报, 2024, 45(07): 94-103.
[4] 武守营, 黄启超, 张开封, 张琳萍, 钟毅, 徐红, 毛志平. 铁-三联吡啶配合物活化高碘酸盐体系构建及其对染色废水的催化降解机制[J]. 纺织学报, 2024, 45(06): 105-112.
[5] 李丽丽, 袁亮, 唐雨霞, 杨文菊, 王浩. 聚多巴胺/壳聚糖改性棉织物的茶色素染色及其抗菌和防紫外线性能[J]. 纺织学报, 2024, 45(03): 106-113.
[6] 李曼丽, 季志浩, 龙柱, 王益峰, 金恩琪. 壳聚糖荧光防伪印花涂料的制备及其应用性能[J]. 纺织学报, 2024, 45(03): 114-121.
[7] 魏建斐, 马国聪, 张安莹, 吴雨航, 崔晓晴, 王锐. 明胶基碳点的热解法制备及其阻燃与防伪应用[J]. 纺织学报, 2023, 44(12): 106-114.
[8] 陈贝, 任李培, 肖杏芳. 铽-金属有机框架改性棉织物的制备及其pH值探测性能[J]. 纺织学报, 2023, 44(12): 123-129.
[9] 姜绍华, 梁帅童, 裴刘军, 张红娟, 王际平. 基于概率密度函数的织物染色侵入动力学分析[J]. 纺织学报, 2023, 44(10): 90-97.
[10] 梁志结, 罗正智, 程海兵, 贾维妮, 毛庆辉. 多钒酸盐催化氧化咖啡酸及其对羊毛织物的原位染色性能[J]. 纺织学报, 2023, 44(10): 98-103.
[11] 连丹丹, 王镭, 杨雅茹, 尹立新, 葛超, 卢建军. 服用聚苯硫醚纤维的制备及其性能[J]. 纺织学报, 2023, 44(08): 1-8.
[12] 韩博, 王玉霖, 舒大武, 王涛, 安芳芳, 单巨川. 活性染料染色废水的循环染色[J]. 纺织学报, 2023, 44(08): 151-157.
[13] 郭玉秋, 钟毅, 徐红, 毛志平. 拼混活性染料染色多组分定量分析方法[J]. 纺织学报, 2023, 44(07): 141-150.
[14] 关振虹, 李丹, 宋金苓, 冷向阳, 宋西全. 易染间位芳纶的制备及其性能[J]. 纺织学报, 2023, 44(06): 28-32.
[15] 唐奇, 柴丽琴, 徐天伟, 王成龙, 王直成, 郑今欢. 聚乳酸/聚3-羟基丁酸-戊酸酯共混纤维及其雪尼尔纱的染色动力学[J]. 纺织学报, 2023, 44(06): 129-136.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!