纺织学报 ›› 2024, Vol. 45 ›› Issue (08): 165-172.doi: 10.13475/j.fzxb.20231103801

• 纺织工程 • 上一篇    下一篇

基于ABAQUS的平纹织物同面对向弯曲有限元模拟

岳旭, 王蕾(), 孙丰鑫, 潘如如, 高卫东   

  1. 生态纺织教育部重点实验室(江南大学),江苏 无锡 214122
  • 收稿日期:2023-11-16 修回日期:2024-04-01 出版日期:2024-08-15 发布日期:2024-08-21
  • 通讯作者: 王蕾(1987—),女,副研究员,博士。主要研究方向为数字化纺织技术。E-mail:wangl_jn@163.com
  • 作者简介:岳旭(2000—),男,硕士生。主要研究方向为织物性能的有限元模拟。
  • 基金资助:
    中国纺织工业联合会应用基础研究项目(J202109);国家自然科学基金项目(61802152);中国博士后科学基金面上资助项目(2020M681736);江南大学研究生科研与实践创新项目(KYCX-23-ZD01);江南大学研究生科研与实践创新项目(KYCX-23-ZD02)

Finite element simulation of bending of plain woven fabrics based on ABAQUS

YUE Xu, WANG Lei(), SUN Fengxin, PAN Ruru, GAO Weidong   

  1. Key Laboratory of Eco-Textiles (Jiangnan University), Ministry of Education, Wuxi, Jiangsu 214122, China
  • Received:2023-11-16 Revised:2024-04-01 Published:2024-08-15 Online:2024-08-21

摘要:

为明晰织物结构对其弯曲性能的影响机制,对织物弯曲过程进行了有限元模拟和实验验证。以涤纶织物为例,通过VHX-5000型超景深数码显微镜观测织物,得到纱线几何参数;根据纱线实际尺寸,利用SolidWorks专业建模软件构建涤纶平纹织物的三维几何模型;基于有限元分析软件ABAQUS研究织物同面对向弯曲性能,分析纱线弹性模量、摩擦因数、泊松比等参数对弯曲实验的影响,并将有限元仿真结果与实验结果进行对比。结果表明:模拟所得抗弯力-位移曲线与实验曲线在0.01水平上呈显著相关,模拟结果与实验结果一致,证明用有限元模拟弯曲织物模型的有效性。

关键词: 三维建模, 有限元分析, 数值模拟, 弯曲性能, 平纹织物

Abstract:

Objective In order to quickly estimate the ability of fabrics to resist bending deformation, this study established the co-facing bending model for plain woven fabrics to simulate the bending process of fabric using finite element analysis software, and to predict the bending properties of plain woven fabrics.

Method Taking polyester plain woven fabric as an example, the geometric parameters of the fabric were observed by ultra-depth digital microscope and modeled by SolidWorks professional modeling software. The fabric bending system under the condition of splint holding was established in the finite element analysis software ABAQUS, and the yarn material properties were given according to the yarn performance parameters obtained by tensile test. Fabric bending was carried out in the state of moving plate extrusion. The simulation results were compared with the actual test results to verify the validity of the finite element simulation.

Results A co-facing bending system for fabrics was established to analyze the fabric's bending performance. The system employed a fabric bending approach that closely resembled real bending conditions. It comprised two plates, with the upper plate as the movable plate capable of downward displacement and the lower plate as the fixed plate, connected to pressure sensors for detecting changes in fabric bending resistance. By applying continuous compressive force to the fabric, it was induced to undergo bending. Within this system, a co-facing bending model for fabrics was developed and subjected to finite element simulation analysis. Based on the simulation results, it was observed that as the movable plate approached the fixed plate, fabric stress was primarily concentrated in the middle section of the warp yarns, gradually propagating towards both ends with increasing bending amplitude. Furthermore, analysis of yarn stress indicated significant stress changes in the warp yarns during the initial stage of fabric deformation, while the weft yarns did not exhibit such changes.Other parameters remain unchanged, when the elastic modulus of the yarn was increased from 200 to 250 MPa, and the maximum bending force was increased from 76.18 to 136.78 cN, indicating that the bending modulus of the fabric is positively affected by the elastic modulus of the yarn. Under the same conditions, the same facing bending test of the designed fabric was carried out. Comparing the simulation results with the test results, it was observed that during the bending process, the fabric exhibited consistent morphological variations, and both the bending resistance-displacement curves exhibited a similar increasing trend.When the displacement is before 8 mm, the two are approximately coincident, and after 8 mm, the two gradually differ. When the displacement is 8-12 mm, the simulated curve is slightly higher than the simulation curve and the test curve, and the correlation coefficient between the test displacement and the simulated bending force is 0.874, and the correlation between the simulated displacement and the test bending force is 0.840. Both of them were significantly correlated at 0.01 level.

Conclusion To better evaluate the fabric's resistance to bending deformation, a co-facing bending configuration that closely resembled the realistic daily bending morphology of fabrics was adopted. A three-dimensional geometric model of a polyester plain weave fabric was created using SolidWorks modeling software. Finite element analysis software ABAQUS was employed to perform simulation analysis. A comparison between the bending resistance-displacement curves obtained from finite element simulation and experimental testing revealed a similar increasing trend. Up to a displacement of 6 mm, the curves were practically coincident, while from 6 to 12 mm, the simulated curve slightly exceeded the experimental curve, but the maximum bending resistance remained nearly identical. Additionally, the two curves exhibited significant correlation at the 0.01 level. These findings confirmed the feasibility of finite element simulation and provided a theoretical basis for the effectiveness of finite element analysis in predicting fabric bending performance. In future research, various fabrics with different raw materials and structural parameters can be selected for simulation testing to further investigate their bending properties.

Key words: 3-D modeling, finite element analysis, numerical simulation, bending property, plain weave fabric

中图分类号: 

  • TS101.8

图1

织物截面结构"

表1

织物几何结构参数"

纱线种类 长轴长度/mm 短轴长度/mm 纱线间距/mm
经纱 1.124 0.238 0.516
纬纱 1.124 0.238 0.471

图2

机织物模型"

图3

织物有限元模型"

图4

模型载荷的设置"

图5

织物网格单元划分图"

图6

织物应力分布云图"

图7

不同纱线弹性模量时的抗弯力-位移曲线"

图8

不同摩擦因数时的抗弯力-位移曲线"

图9

不同泊松比时的抗弯力-位移曲线"

图10

织物保形性测试系统"

图11

织物弯曲过程对比"

图12

织物弯曲形态对比"

表2

织物弯曲实验与模拟的相关性分析"

变量名称 实验位移 模拟位移 实验抗弯力 模拟抗弯力
实验位移 1 0.985** 0.690** 0.874**
模拟位移 0.985** 1 0.840** 0.848**
实验抗弯力 0.690** 0.840** 1 0.668**
模拟抗弯力 0.874** 0.848** 0.668** 1
[1] LIU C. Novel method for measurement of fabric multi-directional bending performance[J]. Fibers and Polymers, 2022, 23(13): 3638-3644.
[2] 刘成霞, 张亚琦. 织物多方向弯曲性能测试新方法[J]. 纺织学报, 2022, 43(10): 53-61.
doi: 10.13475/j.fzxb.20210807605
LIU Chengxia, ZHANG Yaqi. New measurement for fabric multi-directional bending performance[J]. Journal of Textile Research, 2022, 43 (10): 53-61.
doi: 10.13475/j.fzxb.20210807605
[3] 陈文苗, 刘成霞. 悬挂穿孔法测试织物弯曲悬垂性[J]. 丝绸, 2021, 58(8): 40-45.
CHEN Wenmiao, LIU Chengxia. Measurement of fabric bending and draping properties by hanging & perforating method[J]. Journal of Silk, 2021, 58 (8): 40-45.
[4] SOURKI R, CRAWFORD B, VAZIRI R, et al. Meso-level bending/reverse-bending analysis of dry woven fabrics: observing an irreversible behavior during forming[J]. Composite Structures, 2022, 282: 1-11.
[5] 李瑛慧, 谢春萍, 刘新金. 三原组织织物拉伸力学性能有限元仿真[J]. 纺织学报, 2017, 38(11): 41-47.
doi: 10.13475/j.fzxb.20161205107
LI Yinghui, XIE Chunping, LIU Xinjin. Finite element simulation on tensile mechanical properties of three elementary weave fabric[J] Journal of Textile Research, 2017, 38 (11): 41-47.
[6] 孙亚博, 李立军, 马崇启, 等. 基于ABAQUS的筒状纬编针织物拉伸力学性能模拟[J]. 纺织学报, 2021, 42(2): 107-112.
SUN Yabo, LI Lijun, MA Chongqi, et al. Simulation on tensile properties of tubular weft knitted fabrics based on ABAQUS[J]. Journal of Textile Research, 2021, 42(2): 107-112.
[7] SUN F, CHEN C, LIU S, et al. Simulative analysis of the bending property of woven fabric by the comprehensive handle evaluation system for fabrics and yarns[J]. Textile Research Journal, 2017, 87(16): 1977-1990.
[8] 靳欢欢, 杜赵群. 平纹织物三点梁弯曲有限元模拟与分析[J]. 东华大学学报(自然科学版), 2016, 42(3): 344-351.
JIN Huanhuan, DU Zhaoqun. Three-point bending simulation and analysis of plainwoven fabric by finite element method[J]. Journal of Donghua Univer-sity (Natural Science), 2016, 42 (3): 344-351.
[9] 寇兴才, 李旭东, 张赋, 等. 芳纶纤维复合材料弯曲性能实验仿真[J]. 塑料, 2013, 42(4): 78-81.
KOU Xingcai, LI Xudong, ZHANG Fu, et al. Experimental simulation on flexural properties of Kevlar fiber composite[J]. Plastics, 2013, 42 (4): 78-81.
[10] 刘倩楠, 刘新金, 苏旭中. 基于有限元方法的不同集聚纱织物拉伸力学性能分析[J]. 丝绸, 2019, 56(4): 24-29.
LIU Qiannan, LIU Xinjin, SU Xuzhong. Tensile mechanical properties analysis of fabrics with different aggregate yarns based on finite element method[J]. Journal of Silk, 2019, 56(4): 24-29.
[11] 武鲜艳, 申屠宝卿, 马倩, 等. 球形弹体冲击下三维正交机织物结构破坏机制有限元分析[J]. 纺织学报, 2020, 41(8): 32-38.
WU Xianyan, SHENTU Baoqing, MA Qian, et al. Finite element analysis on structural failure mechanism ofthree-dimensional orthogonal woven fabrics subjected to impact of spherical projectile[J]. Journal of Textile Research, 2020, 41(8): 32-38.
[12] 高卫东, 孙丰鑫, 王蕾. 一种纺织品保形性测量装置及测量方法:201810026135.3[P]. 2018-07-27.
GAO Weidong, SUN Fengxin, WANG Lei. A device and method for measuring dimensional stability of textiles: 201810026135.3[P]. 2018-07-27.
[1] 李天宇, 沈伟, 陈立峰, 竺铝涛. 三维角联锁机织复合材料的制备及其弯曲压缩失效机制[J]. 纺织学报, 2024, 45(08): 183-189.
[2] 谢红, 张林蔚, 沈云萍. 基于人体臂部的连续动态服装压力预测模型及准确性表征方法[J]. 纺织学报, 2024, 45(07): 150-158.
[3] 刘倩倩, 尤健明, 王琰, 孙成磊, 祝国成. 纤维弯曲对其集合体过滤特性影响的稳态数值分析[J]. 纺织学报, 2024, 45(07): 31-39.
[4] 马莹, 陈奡, 胡月鹏, 潘俊, 胡瀚杰, 禄盛. 芳纶平纹织物单纱抽拔力学性能分析[J]. 纺织学报, 2024, 45(03): 58-64.
[5] 杨洋, 刘成霞. 可视化织物弯曲性测试方法[J]. 纺织学报, 2024, 45(03): 74-80.
[6] 韩烨, 田苗, 蒋青昀, 苏云, 李俊. 织物-空气层-皮肤三维结构建模及其传热模拟[J]. 纺织学报, 2024, 45(02): 198-205.
[7] 王青, 梁高翔, 殷俊清, 盛晓超, 吕绪山, 党帅. 新型气流牵伸通道结构模型的构建与性能分析[J]. 纺织学报, 2023, 44(11): 52-60.
[8] 杨孟想, 刘让同, 李亮, 刘淑萍, 李淑静. 机织物的热传递与强热条件下热防护性能[J]. 纺织学报, 2023, 44(11): 74-82.
[9] 冯清国, 巫鳌飞, 任家智, 陈宇恒. 棉纺精梳机分离罗拉连杆驱动机构动力学仿真及有限元分析[J]. 纺织学报, 2023, 44(09): 197-204.
[10] 高艺华, 钱付平, 王晓维, 汪虎明, 高杰, 陆彪, 韩云龙. 纺织车间定向均流送风口结构设计及其送风性能[J]. 纺织学报, 2023, 44(08): 189-196.
[11] 连力平, 杨鹏程, 余子健, 龙阳昭, 肖渊. 织物表面激光打标工艺参数的数值模拟及选取方法[J]. 纺织学报, 2023, 44(06): 121-128.
[12] 樊百林, 张昌睿, 郭佳华, 黄钢汉, 尉国梁. 基于Flow Simulation的喷气织机辅助喷嘴喷孔结构优化[J]. 纺织学报, 2023, 44(06): 200-206.
[13] 邓可卉, 卫艺林. 基于三维服装建模技术的古代服装数字化虚拟复原[J]. 纺织学报, 2023, 44(04): 179-186.
[14] 缪莹, 熊诗嫚, 郑敏博, 唐建东, 张慧霞, 丁彩玲, 夏治刚. 高光洁处理对聚酰亚胺短纤纱及其织物性能的影响[J]. 纺织学报, 2023, 44(02): 118-127.
[15] 孙戬, 姜博艺, 张守京, 胡胜. 异纤分拣机剔除喷管结构参数对其性能的影响[J]. 纺织学报, 2022, 43(10): 169-175.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!