纺织学报 ›› 2025, Vol. 46 ›› Issue (01): 187-196.doi: 10.13475/j.fzxb.20231104001

• 机械与设备 • 上一篇    下一篇

基于射流瞬态流速变分模态分解法的纬纱波动幅度预测

沈敏1, 欧阳灿2, 熊小双2, 王真1, 杨学正3, 吕永法3, 余联庆2()   

  1. 1.武汉纺织大学 湖北省数字化纺织装备重点实验室, 湖北 武汉 430200
    2.武汉纺织大学 机械工程与自动化学院, 湖北 武汉 430200
    3.山东日发纺织机械有限公司, 山东 聊城 252001
  • 收稿日期:2023-11-30 修回日期:2024-06-11 出版日期:2025-01-15 发布日期:2025-01-24
  • 通讯作者: 余联庆(1972—),男,教授,博士。主要研究方向为高速织机。E-mail:42676005@qq.com
  • 作者简介:沈敏(1978—),女,副教授,博士。主要研究方向为新型纺织机械。
  • 基金资助:
    国家自然科学基金项目(51505344);国家自然科学基金项目(11872048);山东省重点研发项目(2024CXGC010215);湖北省高等学校优秀中青年科技创新团队项目(T2022015);湖北省自然科学基金项目(2014CFB766)

Prediction of fluctuation amplitude of weft yarns based on jet transient velocity variational modal decomposition

SHEN Min1, OUYANG Can2, XIONG Xiaoshuang2, WANG Zhen1, YANG Xuezheng3, LÜ Yongfa3, YU Lianqing2()   

  1. 1. Hubei Provincial Key Laboratory of Digital Textile Equipment, Wuhan Textile University, Wuhan, Hubei 430200, China
    2. School of Mechanical Engineering and Automation, Wuhan Textile University, Wuhan, Hubei 430200, China
    3. Shandong Rifa Textile Machinery Co., Ltd., Liaocheng, Shandong 252001, China
  • Received:2023-11-30 Revised:2024-06-11 Published:2025-01-15 Online:2025-01-24

摘要: 为降低柔性纬纱在引纬过程中因辅助喷嘴高速气流曳力而产生过大形变,使用基于分解层数优化的变分模态分解(VMD)方法,获得辅助喷嘴射流瞬时速度信号的本征模态分量(IMF),利用IMF预测柔性纬纱运动形变,降低断纬率。首先采用大涡模拟(LES)方法数值模拟了圆锥形、圆弧形及圆柱形入口辅助喷嘴射流的瞬态流场分布,监测了辅助喷嘴射流在势核与势尾区域瞬态速度信号;继而,通过VMD方法,得到监测点速度的本征模态分量,讨论了各本征模态信号波动的方差,最后通过双向流固耦合法得到纬纱的径向偏移来验证预测的准确性。结果发现:3种辅助喷嘴势核与势尾处主模态IMF1速度幅值稳定,为辅助喷嘴的主速度模态;次模态IMF2波动大且与纬纱径向偏移具有同步性,可用于预测纬纱波动;第3模态IMF3为高频振荡信号,可视为流场高频噪声信号去除。

关键词: 喷气织机, 辅助喷嘴射流, 瞬态流场, 大涡模拟, 变分模态分解, 纬纱波动

Abstract:

Objective In the air-jet weaving, the weft yarn is dragged by the supersonic airflow in a specially shaped reed, and the weft could be broken while clashing with the wall of the special shaped reed, leading to decreased insertion efficiency. Due to the strong coupling effect between auxiliary jet and the weft yarn, the movement of the weft yarn shows strong nonlinear and non-stationary characteristics. The transient velocity fluctuation of the air flow directly affects the fluctuation amplitude of the weft movement. This paper aims to analyze the velocity fluctuation characteristics of transient jet generated by the relay nozzle based on the variational modal decomposition (VMD) method.

Method Three types of auxiliary nozzles were designed, i.e., conical inlet, arc inlet and cylindrical inlet, respectively. Firstly, the transient flow field of the auxiliary nozzle was simulated using large eddy simulation (LES). Two monitor points were settled in the jet potential core and tail area, where the original instantaneous velocity signal was obtained from LES dataset. In order to verify the correctness of the LES simulation, both a grid independence verification and an experiment measurement were conducted. Then, the original velocity signal decomposed into a series of the intrinsic mode functions (IMFs) based on the VMD, each IMF representing a different frequency mode inherent in the original velocity signal. The fluctuations of the IMF captured the movement information of the weft. Finally, the fluctuation characteristic of IMF2 was evaluated according to the mean absolute error (MAE), the root mean square error (RMSE) and the mean absolute percentage error (MAPE). In addition, in order to explore the weft movement, the bidirectional fluid-structure interaction method was adopted to explore the radial fluctuation of the yarn, and the weft fluctuation amplitude was predicted by comparing the radial fluctuation and the IMF2 signal law.

Results In order to learn the velocity fluctuation of the auxiliary nozzle with different structures, the transient velocity contour diagram of the auxiliary nozzle with different structures was shown, and it can be seen that at 0.2 s, the three jet velocities remained basically stable, among which the core velocity of the conical jet was the largest (338 m/s), followed by the arc type (326 m/s), and the lowest core velocity of the cylindrical jet was 323 m/s. In the special-shaped reed, the potential core (monitoring point A) determines the maximum velocity, in fact, the potential tail region of the auxiliary jet (monitoring point B) is in contact with the weft, its transient velocity fluctuation will determine the motion displacement of the weft yarn head, and the results show the comparison of the transient velocity original signals of the three auxiliary jets at monitoring points A and B, respectively. In order to find out the fluctuation law behind it, the transient velocity signals of monitoring points A and B were decomposed by VMD, and the intrinsic mode components IMF1, IMF2 and IMF3 were obtained. The results show the comparison of the IMFs of the two monitoring points, respectively, and find that IMF1 is a stable velocity curve, while IMF2 and IMF3 are sinusoidal velocity curves. In order to verify and predict the trend of weft fluctuation, the flexible weft yarn fluctuates radially in the coupled flow field composed of three different structures of auxiliary nozzles and special-shaped reeds, among which the maximum radial offset of the conical auxiliary nozzle is 0.33 mm, the second is 0.73 mm for cylindrical type, and the radial offset value of the arc auxiliary nozzle is the largest, which is 1.35 mm.

Conclusion After the three auxiliary jets enter the free space from the nozzle, the transient velocity presents the characteristics of non-stationary signal, and the amplitude gradually decays. The velocity signals of the conical, arc and cylindrical auxiliary jet potential core region (monitoring point A) and potential tail (monitoring point B) were decomposed by VMD, and the intrinsic mode function IMF1 of the two monitoring points was the largest and stable, which can be used as the average velocity of the auxiliary jet. The obvious fluctuation of IMF2 can be used as the main basis for predicting the weft shift. However, the IMF3 amplitude is small and the frequency is high, which indicates that there is a local disturbance in the flow field, which can be filtered out as a noise signal. Further analysis of the IMF modes in the potential tail region of the three auxiliary jets, and the results of the fluctuations of MAE, RMSE and MAPE show that the amplitude fluctuation of IMF2 of the conical auxiliary jet is the smallest, and its airflow fluctuation is the most stable. Considering the two-way coupling effect of the synthetic flow field and the flexible weft yarn in the special-shaped reed, the numerical simulation shows that the radial offset of the weft yarn head is the smallest in the synthetic flow field of the conical auxiliary spray, followed by the displacement of the head end in the cylindrical auxiliary spray, and the tip displacement generated in the arc auxiliary injection synthesis gas flow is the largest.

Key words: air jet loom, auxiliary nozzle jet, transient flow field, large eddy simulation, variational modal decomposition, fluctuation of weft yarn

中图分类号: 

  • TS103.3

图1

各辅助喷嘴结构参数 单位:mm。"

图2

辅助喷嘴及外部流场网格划分与监测点设置"

图3

合成流场几何模型"

图4

合成流场与单根纤维束网格模型"

图5

辅助喷嘴射流气流测试装置原理图"

图6

辅助喷嘴射流出口轴线平均速度测量装置 1 —辅助喷嘴;2—采集卡;3—电磁阀;4—毕托管;5—调压阀;6—压力表。"

表1

LES数值模拟网格无关性验证表"

网格类型 网格数量/
105
监测点A在0.2 s时的
速度/(m·s-1)
误差/
%
粗网格 5.3 318.4 1.12
中网格 9.0 320.3 0.27
精网格 12.3 321.7 0.30
超精网格 15.4 323.2 1.27

图7

圆锥形辅助喷嘴射流数值模拟和实验验证结果"

图8

不同压力下辅助喷嘴瞬态流场相似性验证结果"

图9

3种辅助喷嘴在0.2 s时瞬态速度分布云图"

图10

监测点A处3种辅助喷嘴射流瞬态速度原始信号对比"

图11

监测点B处3种辅助喷嘴射流瞬态速度原始信号对比"

图12

监测点A处3种辅喷射流本征模态分量对比"

图13

监测点B处3种辅助喷嘴射流本征模态分量对比"

表2

辅助喷嘴射流势尾处速度模态波动评价表"

本征模态
函数
平均绝对
误差/(m·s-1)
均方根
误差/(m·s-1)
平均绝对
百分误差/%
圆锥形IMF1 0.700 1.671 1.287
圆弧形IMF1 1.893 2.631 3.820
圆柱形IMF1 1.432 2.039 2.755
圆锥形IMF2 4.126 6.555 0.474
圆弧形IMF2 5.284 8.819 1.232
圆柱形IMF2 4.465 6.983 0.634
圆锥形IMF3 3.309 4.835 0.532
圆弧形IMF3 3.538 5.225 0.865
圆柱形IMF3 3.946 5.500 1.023

图14

在t=0.2 s时耦合流场内纬纱运动状态"

图15

纬纱头端径向偏移对比图"

[1] 胥光申, 孔双祥, 刘洋, 等. 基于Fluent的喷气织机辅助喷嘴综合性能[J]. 纺织学报, 2018, 39(8): 124-129.
XU Guangshen, KONG Shuangxiang, LIU Yang, et al. Comprehensive performance of auxiliary nozzle in air-jet loom based on Fluent[J]. Journal of Textile Research, 2018, 39(8): 124-129.
[2] 李斯湖, 沈敏, 白聪, 等. 喷气织机辅助喷嘴结构参数对流场特性的影响[J]. 纺织学报, 2019, 40(11): 161-167.
LI Sihu, SHEN Min, BAI Cong, et al. Influence of structure parameter of auxiliary nozzle in air-jet loom on characteristics of flow field[J]. Journal of Textile Research, 2019, 40(11): 161-167.
[3] JIANG S W, JIN Y Z, HU X D, et al. Characteristics of intersecting airflows in the narrow flow channel[J]. Journal of The Textile Institute, 2017, 34(2):1-7.
[4] 刘宜胜, 周鑫磊, 刘丹丹. 气动折入边装置中纱线初始位置对折边效果的影响[J]. 纺织学报, 2022, 43(3):10-14.
LIU Yisheng, ZHOU Xinlei, LIU Dandan, et al. Effect of yarn's initial position on yarn tucked-in in pneumatic tucked-in selvedge apparatus[J]. Journal of Textile Research, 2022, 43(3):10-14.
[5] 金玉茂, 葛明桥, 邱华. 旋流纺闭合式纤维集聚机构的改进及成纱性能[J]. 纺织学报, 2011, 32(10): 1-7.
JIN Yumao, GE Mingqiao, QIU Hua. Improvement and yarn forming properties of swirling closefiber agglomeration mechanism[J]. Journal of Textile Research, 2011, 32(10): 1-7.
[6] 刘承文, 金玉珍, 胡旭东, 等. 喷气织机辅喷嘴气流场数值模拟及特性分析[J]. 现代纺织技术, 2011, 19(4):1-5.
LIU Chengwen, JIN Yuzhen, HU Xudong, et al. Numerical simulation and characteristic analysis of airflow field of auxiliary nozzle of air-jet loom[J]. Advanced Textile Technology, 2011, 19(4):1-5.
[11] MARIOLIS I G, DERMATAS E S. Automated assessment of textile seam quality based on surface roughness estimation[J]. Journal of The Textile Institute, 2010, 101(7): 653-659.
[12] ZHANG Shuang, WANG Xiaodong, LI Xiang, et al. Extraction method of rolling bearing fault characteristics based on FVMD[J]. Journal of Vibration and Shock, 2022, 41(6) 236-244.
[13] 张俊, 张建群, 钟敏, 等. 基于VMD-MCKD方法的风机轴承微弱故障诊断[J]. 振动、测试与诊断, 2020, 40(2):287-296.
ZHANG Jun, ZHANG Jianqun, ZHONG Min, et al. Weak fault diagnosis of wind turbine bearings based on VMD-MCKD method[J]. Vibration, Testing and Diagnosis, 2020, 40(2):287-296.
[14] 周晨赓. 几种信号分析方法对非线性、非平稳信号分析效果的比较[J]. 山东电子, 2003(4):43-45.
ZHOU Chengeng. Comparison of the effects of several signal analysis methods on nonlinear and nonstationary signal analysis[J]. Shandong Electronics, 2003(4):43-45.
[15] 唐贵基, 王晓龙. 参数优化变分模态分解方法在滚动轴承早期故障诊断中的应用[J]. 西安交通大学学报, 2015, 49(5):73-81.
TANG Guiji, WANG Xiaolong. Parameter optimized variational mode decomposition method with application to incipient fault diagnosis of rolling bearing[J]. Journal of Xi'an Jiaotong University, 2015, 49(5): 73-81.
[16] 祝章琛. 纬纱飞行和主喷射工艺参数[J]. 东华大学学报(自然科学版), 1998, 24(5):84-87.
ZHU Zhangchen. Rneumatic weft insertion and main jet parameters[J]. Journal of Donghua University (Natural Science), 1998, 24(5):84-87.
[7] DELCOUR L, PEETERS J, DEGROOTE J. Three-dimensional fluid-structure interaction simulations of a yarn subjected to the main nozzle flow of an air-jet weaving loom using a Chimera technique[J]. Textile Research Journal, 2020, 90(2):34-35.
[8] 陈雪善, 卢跃华, 祝成炎. 筘槽内引纬气流场分布及其对纬纱飞行的影响[J]. 纺织学报, 2009, 30(7):31-35.
CHEN Xueshan, LU Yuehua, ZHU Chengyan. Air flow field in unconventional shaped reed and its influence[J]. Journal of Texile Research, 2009, 30(7):31-35.
[9] 李相东, 金玉珍, 王健. 喷气织机主喷嘴引纬特性实验研究[J]. 轻工机械, 2015, 33(5):10-14.
LI Xiangdong, JIN Yuzhen, WANG Jian. Experimental study on weft insertion characteristics of main nozzle of air-jet loom[J]. Light Industry Machinery, 2015, 33(5): 10-14.
[10] 王卫华, 冯志华, 谭保辉, 等. 喷气织机辅助喷嘴流场特性分析与纬纱牵引实验研究[J]. 纺织学报, 2014, 35(10):121-128.
WANG Weihua, FENG Zhihua, TAN Baohui, et al. Analysis of flow field characteristics of auxiliary nozzle of air-jet loom and experimental study on weft pulling[J]. Journal of Textile Research, 2014, 35(10):121-128.
[1] 方敬兵, 沈敏, 李俊祥, 王真, 余联庆. 纤维束与异形筘内合成气流的相互耦合作用[J]. 纺织学报, 2024, 45(03): 194-201.
[2] 肖世超, 沈敏, 方敬兵, 王真, 余联庆. 主喷嘴与高速异形孔辅助喷嘴引纬合成流场特性[J]. 纺织学报, 2023, 44(12): 181-188.
[3] 樊百林, 张昌睿, 郭佳华, 黄钢汉, 尉国梁. 基于Flow Simulation的喷气织机辅助喷嘴喷孔结构优化[J]. 纺织学报, 2023, 44(06): 200-206.
[4] 周浩邦, 沈敏, 余联庆, 肖世超. 辅助喷嘴结构对喷气织机异形筘内合成流场特征的影响[J]. 纺织学报, 2021, 42(11): 166-172.
[5] 李斯湖, 沈敏, 白聪, 陈亮. 喷气织机辅助喷嘴结构参数对流场特性的影响[J]. 纺织学报, 2019, 40(11): 161-167.
[6] 广少博, 金玉珍, 祝晓晨. 喷气织机延伸喷嘴内气流场特性分析[J]. 纺织学报, 2019, 40(04): 135-139.
[7] 胥光申 孔双祥 刘洋 罗时杰. 基于Fluent的喷气织机辅助喷嘴综合性能[J]. 纺织学报, 2018, 39(08): 124-129.
[8] 颜苏芊 王力平. 喷气织机中压缩空气的泄漏评估及其修复优化[J]. 纺织学报, 2018, 39(04): 130-136.
[9] 韩要宾 张杰 高卫东 潘如如 张宁. 基于生产实践的喷气织机主喷嘴气压优选[J]. 纺织学报, 2017, 38(01): 126-131.
[10] 张敏 王鸿博 高卫东 陈巧兰. 喷气织机辅助喷嘴流场特性与耗气量分析[J]. 纺织学报, 2016, 37(12): 123-128.
[11] 张亮 冯志华 张晓飞 刘帅. 喷气织机辅助喷嘴与异形筘结构参数对流场的影响[J]. 纺织学报, 2016, 37(09): 129-133.
[12] 张敏 王鸿博 高卫东 卢雨正 . 喷气织机车速对织物纬向物理力学性能的影响[J]. 纺织学报, 2016, 37(08): 41-46.
[13] 金玉珍 胡小冬 林培锋 胡旭东. 喷气织机打纬机构及墙板的振动特性[J]. 纺织学报, 2016, 37(07): 131-136.
[14] 张亮 冯志华 刘帅 陈亮 张晓飞. 喷气织机辅助喷嘴喷孔结构优化设计[J]. 纺织学报, 2016, 37(06): 112-117.
[15] 董腾中 冯志华 王卫华 陈亮 刘帅. 喷气织机主喷嘴引纬流场数值模拟与实验验证[J]. 纺织学报, 2014, 35(5): 126-0.
Viewed
Full text
7
HTML PDF
Just accepted Online first Issue Just accepted Online first Issue
0 0 3 0 0 4

  From Others local
  Times 5 2
  Rate 71% 29%

Abstract
55
Just accepted Online first Issue
0 0 55
  From Others local
  Times 46 9
  Rate 84% 16%

Cited

Web of Science  Crossref   ScienceDirect  Search for Citations in Google Scholar >>
 
This page requires you have already subscribed to WoS.
  Shared   
  Discussed   
No Suggested Reading articles found!