纺织学报 ›› 2024, Vol. 45 ›› Issue (12): 166-171.doi: 10.13475/j.fzxb.20231104301

• 染整工程 • 上一篇    下一篇

普鲁士蓝涂层非织造材料在细菌检测中的应用

夏梦1, 成悦1, 刘蓉1,2, 李大伟1,2, 付译鋆1,2()   

  1. 1.南通大学 纺织服装学院, 江苏 南通 226019
    2.安全防护用特种纤维复合材料研发国家地方联合工程研究中心, 江苏 南通 226019
  • 收稿日期:2023-11-20 修回日期:2024-04-15 出版日期:2024-12-15 发布日期:2024-12-31
  • 通讯作者: 付译鋆(1989—),女,副教授,博士。主要研究方向为生物医用纺织材料。E-mail:fuyj@ntu.edu.cn
  • 作者简介:夏梦(1999—),女,硕士生。主要研究方向为生物医用纺织材料。
  • 基金资助:
    江苏省高等学校基础科学(自然科学)研究重大项目(24KJA540002);江苏省青年科技人才托举工程项目(JSTJ-2024-045)

Application of Prussian blue coated nonwoven materials in bacterial detection

XIA Meng1, CHENG Yue1, LIU Rong1,2, LI Dawei1,2, FU Yijun1,2()   

  1. 1. School of Textile and Clothing, Nantong University, Nantong, Jiangsu 226019, China
    2. National & Local Joint Engineering Research Center of Technical Fiber Composites for Safety and Health, Nantong, Jiangsu 226019, China
  • Received:2023-11-20 Revised:2024-04-15 Published:2024-12-15 Online:2024-12-31

摘要:

针对传统细菌检测方法操作步骤复杂、检测时间长、成本高等问题,研制了具有细菌检测功能的医疗卫生用非织造材料。首先制备了普鲁士蓝纳米颗粒(PB NPs),然后利用声化学涂层技术对聚丙烯(PP)纺黏非织造材料进行涂层整理,制得可检测细菌的功能非织造材料,并对其形貌结构、化学成分和细菌检测性能进行分析研究。结果表明:PB NPs形貌呈现明显的立方体结构;声化学涂层后的非织造材料(PP/PB)在与金黄色葡萄球菌和大肠杆菌培养24 h后,可观察到明显的颜色变化,表明其具有优异的细菌检测功能。

关键词: 普鲁士蓝, 声化学涂层, 非织造材料, 细菌检测

Abstract:

Objective The breeding and spread of bacteria on medical and hygienic materials are a major threat to human health. Therefore, it is of great significance to develop bacteria detective textile materials with high efficiency and performance. Prussian blue (PB) is a coordination compound with a redox potential high enough to react with proteins and mediators of the bacterial electron transport chain. Besides, it has a high extinction molar coefficient, distinct color change after reduction, which can be used as an indicator of bacterial reduction metabolism. Polypropylene (PP) spunbonded nonwovens have good chemical stability and are not easy to chemically react with Prussian blue or other substances tested, and the large surface area and pores of PP spunbonded nonwovens contribute to the loading of Prussian blue nanoparticles (PB NPs). In this paper, PP spunbonded nonwoven and PB NPs were employed as substrate and coating material respectively to prepare functional nonwoven with bacterial detection function by acoustic chemical coating technology.

Method PB NPs were firstly prepared by using polyethylpyrrolidone and potassium ferricyanide as raw materials. Then, polyvinyl alcohol modified PP nonwoven (PP/PVA) was prepared by hydrophilic modification. As the last step, PB NPs were combined onto PP/PVA nonwoven by means of acoustic chemical coating technology to obtain PP/PB nonwoven. Scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FT-IR) and X-ray diffraction (XRD) were used to characterize the morphology, chemical and crystalline structures of PB NPs, PP, PP/PVA and PP/PB nonwovens. Especially, the bacterial detection performance of PP/PB nonwoven was evaluated by oscillating method.

Results It was evident from the SEM image that the prepared PB NPs had a regular cubic structure with uniform particle size distribution. The fibers of pure PP nonwoven were arranged dandomly and the fiber surface was smooth and free of impurities, while obvious particles and network adhesion were found on the surface of PP/PVA nonwoven and PP/PB nonwoven, respectively. The infrared spectra of different samples showed that PP/PB nonwoven retained the characteristic absorption peaks of PP/PVA and PB NPs, indicating that PB NPs was successfully loaded on PP nonwoven. XRD patterns of different samples show that PP/PB nonwoven demopnstrated diffraction peaks of PP (2θ=14.18°, 17.05°, 18.64°, 21.36° and 25.37°) and PB NPs (2θ=35.42°, 39.76°, 43.74°, 50.95°, 54.29° and 57.49°), implying that PB NPs were successfully loaded onto PP nonwoven by acoustic chemical coating technology. Finally, the bacterial detection performance of PP/PB nonwoven was investigated. With the increase of the concentration of PB NPs solution, the color of the solution gradually deepened. After 24 h of incubation in the bacterial solution containing Staphylococcus aureus and Escherichia coli, the color of the samples changed from blue to white, indicating that PP/PB nonwoven fabric could detect these bacteria through its color development reaction. Therefore, it is possible to applyPB NPs to medical and hygienic materials such as surgical gowns and masks to achieve the detection and early warning of bacteria through the color reaction, so as to effectively avoid adverse effects caused by bacteria.

Conclusion The PP/PB nonwoven fabric with PB NPS coating were prepared by acoustic chemical coating technology, which has excellent bacterial detection performance. After inoculation with Staphylococcus aureus and Escherichia coli, the color of PP/PB nonwoven fabric changed from blue to white. It can be applied to medical care products such as surgical gowns and masks to realize the detection and early warning of bacteria through color reaction, so as to effectively avoid the adverse effects of bacteria.

Key words: Prussian blue, acoustochemical coating, nonwoven materials, bacteria detection

中图分类号: 

  • TS101.8

图1

PB NPs的微观形貌照片"

图2

不同非织造材料的微观形貌照片"

图3

不同试样的红外光谱曲线"

图4

不同试样的XRD衍射图谱"

图5

不同试样的细菌检测结果"

[1] 南清清, 曾庆红, 袁竟轩, 等. 抗菌功能纺织品的研究进展[J]. 纺织学报, 2022, 43(6):197-205.
NAN Qingqing, ZENG Qinghong, YUAN Jingxuan, et al. Research progress of antibacterial function textiles[J]. Journal of Textile Research, 2022, 43(6):197-205.
[2] 翟丽莎, 王宗垒, 周敬伊, 等. 纺织用抗菌材料及其应用研究进展[J]. 纺织学报, 2021, 42(9):170-179.
ZHAI Lisha, WANG Zonglei, ZHOU Jingyi, et al. Research progress on textile antibacterial materials and its application[J]. Journal of Textile Research, 2021, 42(9):170-179.
[3] ANDRA S, BALU S K, JEEVANANDAM J, et al. Emerging nanomaterials for antibacterial textile fabrication[J]. Naunyn-Schmiedeberg's Archives of Pharmacology, 2021(394): 1355-1382.
[4] FIJAN S, TURK S S. Hospital textiles, are they a possible vehicle for healthcare-associated infec-tions?[J]. International Journal of Environmental Research and Public Health, 2012, 9(9): 3330-3343.
[5] 焦宏璞, 钱晓明, 钱幺, 等. 医疗用非织造材料的加工技术及发展[J]. 化工新型材料, 2019, 47(12):27-31,36.
JIAO Hongpu, QIAN Xiaoming, QIAN Yao, et al. Processing technology and development of medical nonwovens[J]. New Chemical Materials, 2019, 47(12): 27-31,36.
[6] 曲萍, 李青翠, 卢彦宏, 等. 快速测试片在医疗器械微生物检测中的应用[J]. 中国药物与临床, 2021, 21(9): 1598-1600.
QU Ping, LI Qingcui, LU Yanhong, et al. Application of rapid test pieces in microbial detection of medical devices[J]. Chinese Journal of Medicine and Clinic, 2021, 21(9): 1598-1600.
[7] YADAV B S, RONDA V, VASHISTA D P, et al. Sequencing and computational approaches to identification and characterization of microbial orga-nisms[J]. Biomedical Engineering and Computa-tional Biology, 2013, 5: 43-49.
[8] INOUYE M. The first determination of DNA sequence of a specific gene[J]. Gene, 2016, 582(1): 94-95.
[9] PARK S J, ONIZUKA S, SEKI M, et al. A systematic sequencing-based approach for microbial contaminant detection and functional inference[J]. BMC Biology, 2019. DOI: 10.1186/s12915-019-0690-0.
[10] LU H Y, Giordano F, ZM N. Oxford nanopore MinION sequencing and genome assembly[J]. Genomics Proteomics & Bioinformatics, 2016, 14(5): 265-279.
[11] DING Z, KASAHARA H, NAKANO M, et al. Bacterial detection based on polymerase chain reaction and microbead dielectrophoresis characteristics[J]. IET Nanobiotechnol, 2017, 11(5): 562-567.
[12] FANG S, LIU C, WAN S, et al. A novel antigen immunochromatography fluorometric strip for rapid detection and application of pathogenic bacterial high-quality antibody[J]. Journal of Immunological Methods, 2021. DOI: 10.1016/j.jim.2021.113014.
[13] 陈帅. 可生物降解纳米复合体的制备及其细菌检测功能和抗菌性能研究[D]. 天津: 天津理工大学, 2019:5-13.
CHEN Shuai. Preparation of biodegradable nanocomposites and their bacterial detection and antibacterial properties[D]. Tianjin:Tianjin University of Technology, 2019: 5-13.
[14] FERRERVILANOVA A, ALONSO Y, DIETVORST J, et al. Sonochemical coating of Prussian blue for the production of smart bacterial-sensing hospital textiles[J]. Ultrasonics Sonochemistry, 2021. DOI: 10.1016/j.ultsonch.2020.105317.
[15] PETKOVA P, FRANCESKO A, FERNANDES M M, et al. Sonochemical coating of textiles with hybrid ZnO/Chitosan antimicrobial nanoparticles[J]. ACS Applied Materials & Interfaces, 2014, 6(2): 1164-1172.
[16] ABRAMOVA A, GEDANKEN A, POPOV V, et al. A sonochemical technology for coating of textiles with antibacterial nanoparticles and equipment for its implementation[J]. Materials Letters, 2013, 96: 121-124.
[17] 李酽, 宋双, 单林曦, 等. Au修饰纳米ZnO的超声化学法制备及光催化性能[J]. 精细化工, 2021, 38(8):1597-1603.
LI Chang, SONG Shuang, SHAN Linxi, et al. Ultrasonic chemical preparation and photocatalytic properties of Au modified ZnO nanoparticles[J]. Fine Chemical Industry, 2021, 38(8): 1597-1603.
[18] XU Q B, ZHENG W S, DUAN P P, et al. One-pot fabrication of durable antibacterial cotton fabric coated with silver nanoparticles via carboxymethyl chitosan as a binder and stabilizer[J]. Carbohydrate Polymers, 2019, 204: 42-49.
[19] 姜婷婷. 普鲁士蓝基光热纳米材料的构筑及其杀菌性能研究[D]. 哈尔滨: 哈尔滨工业大学, 2019:11-18.
JIANG Tingting. Construction of Prussian blue-based photothermal nanomaterials and research on their bactericidal properties[D]. Harbin:Harbin Institute of Technology, 2019: 11-18.
[20] GERVAIS C, LANGUILLE M A, REGUER S, et al. Why does Prussian blue fade? Understanding the role(s) of the substrate[J]. Journal of Analytical Atomic Spectrometry, 2013, 28(10): 1600-1609.
[21] BUSQUETS M A, ESTELRICH J. Prussian blue nanoparticles: synthesis, surface modification, and biomedical applications[J]. Drug Discovery Today, 2020, 25(8): 1431-1443.
[22] DING P, SONG G, ZHOU J D, et al. Collection of rolling fingerprints by the electrochromism of Prussian blue[J]. Dyes and Pigments, 2015, 120: 169-174.
[23] 赵博. 医用聚丙烯PP纺粘非织造布综合性能测试与分析[J]. 浙江纺织服装职业技术学院学报, 2019, 18(3):8-19.
ZHAO Bo. Testing and analysis of comprehensive properties of medical polypropylene PP spunbond nonwovens[J]. Journal of Zhejiang Textile and Garment Technical College, 2019, 18(3): 8-19.
[24] NITHYAKALYANI D, RAMACHANDRAN T, RAJENDRAN R. Assessment of antibacterial activity of herbal finished surface modified polypropylene nonwoven fabric against bacterial pathogens of wound[J]. Journal of Applied Polymer Science, 2013, 129(2): 672-681.
[25] HIROMI K S, MASAHIKO T, TEPPEI I, et al. Quick and easy sample preparation without resin embedding for the bone quality assessment of fresh calcified bone using fourier transform infrared imaging[J]. Plos One, 2018. DOI: 10.1371/journal.pone.0189650.
[26] 傅奇炜. 聚丙烯的晶体结构表征[J]. 生物化工, 2020, 6(3): 99-101.
FU Qiwei. Characterization of the crystal structure of polypropylene[J]. Biochemical Engineering, 2020, 6(3): 99-101.
[27] SREEJA S, SREEDHANYA S, SMIJESH N, et al. Organic dye impregnated poly(vinyl alcohol) nanocomposite as an efficient optical limiter: structure, morphology and photophysical properties[J]. Journal of Materials Chemistry C, 2013, 1(24): 3851-3861.
[28] NISHINO T, MATSUMOTO T, NAKAMAE K. Surface structure of isotactic polypropylene by X-Ray diffrac-tion[J]. Polymer Engineering & Science, 2000, 40(2): 336-343.
[29] 刘兆阳. 普鲁士蓝的可控制备及其比色检测应用研究[D]. 沈阳: 东北师范大学, 2020: 1-53.
LIU Zhaoyang. Research on controllable preparation of Prussian blue and its application of colorimetric detection[D]. Shenyan: Northeast Normal University, 2020: 1-53.
[30] VENKATARAMAN D, SHABANI E, JH P. Advancement of nonwoven fabrics in personal protective equipment[J]. Materials, 2023. DOI: 10.3390/ma16113964.
[1] 鲁颖科, 金炳奇, 徐涛, 高一蕾, 邓炳耀, 李昊轩. 基于粘胶纤维非织造材料的太阳能水电联产装置设计及其性能[J]. 纺织学报, 2024, 45(07): 78-85.
[2] 王楠, 孙辉, 于斌, 许磊, 朱祥祥. 基于熔喷非织造材料的温度传感器制备及其传感性能[J]. 纺织学报, 2024, 45(05): 138-146.
[3] 陈荣轩, 孙辉, 于斌. N-TiO2/聚丙烯复合熔喷非织造材料的制备及其光催化性能[J]. 纺织学报, 2024, 45(03): 137-147.
[4] 秦子轩, 张恒, 李晗, 翟倩, 甄琪, 钱晓明. 非溶相共混熔喷非织造技术的研究进展[J]. 纺织学报, 2024, 45(03): 219-226.
[5] 肖昊, 孙辉, 于斌, 朱祥祥, 杨潇东. 壳聚糖-SiO2气凝胶/纤维素/聚丙烯复合水刺材料的制备及其吸附染料性能[J]. 纺织学报, 2024, 45(02): 179-188.
[6] 刘金鑫, 周雨萱, 朱柏融, 吴海波, 张克勤. 热黏合聚乙烯/聚丙烯双组分纺黏非织造材料性能及其过滤机制[J]. 纺织学报, 2024, 45(01): 23-29.
[7] 王镕琛, 张恒, 翟倩, 刘瑞焱, 黄鹏宇, 李霞, 甄琪, 崔景强. 聚乳酸超细纤维敷料的熔喷成形工艺及其快速导液特性[J]. 纺织学报, 2024, 45(01): 30-38.
[8] 谷英姝, 朱燕龙, 汪滨, 董振峰, 谷潇夏, 杨昌兰, 崔萌, 张秀芹. 聚乳酸/驻极体熔喷非织造材料的制备及其性能[J]. 纺织学报, 2023, 44(08): 41-49.
[9] 杨潇东, 于斌, 孙辉, 朱斐超, 刘鹏. 聚乙烯三氟氯乙烯熔喷非织造材料的制备及其过滤性能[J]. 纺织学报, 2023, 44(02): 19-26.
[10] 张宇静, 陈连节, 张思东, 张强, 黄瑞杰, 叶翔宇, 汪伦合, 宣晓雅, 于斌, 朱斐超. 高熔融指数聚乳酸母粒的制备及其熔喷材料的可纺性[J]. 纺织学报, 2023, 44(02): 55-62.
[11] 吴燕金, 王江, 王洪. 水驻极聚丙烯熔喷非织造材料的制备及其带电特性分析[J]. 纺织学报, 2022, 43(12): 29-34.
[12] 刘亚, 程可为, 赵义侠, 于雯, 张淑苹, 钱子茂. 热塑性聚氨酯熔喷非织造材料制备与性能[J]. 纺织学报, 2022, 43(11): 88-93.
[13] 石磊, 张琳炜, 刘亚, 夏磊, 庄旭品. 分离膜湿法非织造支撑体的结构设计与应用[J]. 纺织学报, 2022, 43(06): 15-21.
[14] 孙焕惟, 张恒, 崔景强, 朱斐超, 王国锋, 苏天阳, 甄琪. 聚乳酸非织造材料的后牵伸辅助熔喷成形工艺及其力学性能[J]. 纺织学报, 2022, 43(06): 86-93.
[15] 侯倩倩, 李文熙, 赵美华. 光催化条件下棉织物的蓝晒工艺印相[J]. 纺织学报, 2022, 43(04): 110-116.
Viewed
Full text
18
HTML PDF
Just accepted Online first Issue Just accepted Online first Issue
0 0 4 0 0 14

  From Others local
  Times 9 9
  Rate 50% 50%

Abstract
65
Just accepted Online first Issue
0 0 65
  From Others local
  Times 51 14
  Rate 78% 22%

Cited

Web of Science  Crossref   ScienceDirect  Search for Citations in Google Scholar >>
 
This page requires you have already subscribed to WoS.
  Shared   
  Discussed   
No Suggested Reading articles found!