纺织学报 ›› 2024, Vol. 45 ›› Issue (09): 106-112.doi: 10.13475/j.fzxb.20231105101

• 染整工程 • 上一篇    下一篇

可纺性竹原纤维的脱胶工艺及其性能

尹祥1, 朱恩清1,2, 杨静2, 杨海艳2, 王大伟2, 石纯2, 史正军1,2()   

  1. 1.西南林业大学 国家林业和草原局丛生竹工程技术研究中心, 云南 昆明 650224
    2.西南林业大学 西南地区林业生物质资源高效利用国家林业和草原局重点实验室, 云南 昆明 650224
  • 收稿日期:2023-11-22 修回日期:2024-03-20 出版日期:2024-09-15 发布日期:2024-09-15
  • 通讯作者: 史正军(1979—),男,教授,博士。主要研究方向为生物质组分的清洁拆解和高效利用研究。E-mail: shizhengjun1979@swfu.edu.cn
  • 作者简介:尹祥(1997—),男,硕士生。主要研究方向为生物质化学品与材料。
  • 基金资助:
    国家自然科学基金项目(31760195)

Degumming process and properties of spinnable natural bamboo fibers

YIN Xiang1, ZHU Enqing1,2, YANG Jing2, YANG Haiyan2, WANG Dawei2, SHI Chun2, SHI Zhengjun1,2()   

  1. 1. Sympodial Bamboos Technological and Engineering Research Center of National Forestry and Grassland Administration, Southwest Forestry University, Kunming, Yunnan 650224, China
    2. Key Laboratory of State Forestry and Grassland Administration on Highly-Efficient Utilization of Forestry Biomass Resources in Southwest China, Southwest Forestry University, Kunming, Yunnan 650224, China
  • Received:2023-11-22 Revised:2024-03-20 Published:2024-09-15 Online:2024-09-15

摘要:

针对传统竹原纤维制备过程能耗大、污染环境、时间长,且获得的纤维表面粗糙、长度低等问题,构建了氯化胆碱-乳酸低共熔溶剂(DES)脱胶、过氧乙酸(PAA)脱胶、DES协同PAA脱胶3种绿色脱胶方法。通过傅里叶变换红外光谱、扫描电子显微镜和X射线衍射仪等测试手段,对采用传统方法和3种不同绿色脱胶工艺所得纤维的理化性能进行了测试和表征。研究结果表明:制备竹原纤维的4种方法均可去除胶质部分,经DES溶剂脱胶可有效脱除竹原纤维的半纤维素,但木质素残余量高,PAA脱除木质素的效率最高,DES协同PAA脱胶制备的纤维素含量最高;随着竹原纤维无定形区域胶质部分的脱除,4种脱胶方式均可提高纤维的相对结晶度,但传统脱胶制备的纤维结晶度变化最小;DES协同PAA脱胶制备的纤维线密度最低(50.07 tex),断裂强度最高(2.98 cN/dtex),具有最佳的可纺性能。

关键词: 竹原纤维, 脱胶, 前处理, 低共熔溶剂, 过氧乙酸

Abstract:

Objective Bamboo is a promising alternative source of textile fibers by virtue of its rapid growth, ease of cultivation, wide availability and renewable nature. The preparation of traditional natural bamboo fibers has drawbacks such as high energy consumption, environmental pollution and long processing time, resulting in rough fibers with low length. Hence, it is of great practical value to explore for a cost-effective, eco-friendly, and efficient method for preparing natural bamboo fibers.

Method Three green degumming methods were developed to address these issues, which are choline chloride-lactic acid deep eutectic solvent (DES) degumming, peracetic acid (PAA) degumming, and DES synergistic PAA degumming. Fourier-transform infrared spectroscopy (FT-IR), scanning electron microscopy, and X-ray diffraction were adopted to test and characterize the physicochemical properties of fibers obtained using conventional methods and the three different green degumming methods.

Results FT-IR results show that the lignin benzene ring characteristic absorption peaks were near 1 610 cm-1and 1 500 cm-1. The lignin benzene ring characteristic peaks were weakened by PAA and DES synergistic PAA treatment, indicating that PAA has good delignification effect. Besides, all four methods of preparing natural bamboo fibers can remove the gum part. DES consisting of choline chloride-lactic acid could effectively remove the hemicellulose of the bamboo chips, reducing from 12.85% to 8.67%. However, the residual lignin content remained high at 27.10%, close to 28.77% of bamboo chips. PAA had the highest efficiency in removing lignin, with only 2.05% remaining. The highest cellulose content was obtained by DES synergistic PAA degumming, at 86.72%. The surface of fibers prepared by DES synergistic PAA degumming was significantly less rough, its fibers surface was smoother. Furthermore, with the removal of the amorphous area of the glue part of natural bamboo fibers, it was shown that none of the four degumming methods changed the crystal structure of the fibers and all four deacetylation methods can increase the relative crystallinity of the fibers, among them, DES synergistic PAA degumming obtained the largest crystallinity of 69.22%. But the crystallinity of fibers prepared by conventional degumming changes the least, at 62.42%. Fibers prepared by DES, DES synergistic PAA degumming and conventional degumming all had high lengths of 6.97 cm, 6.19 cm and 6.72 cm, respectively, with DES having the highest line density of 123.98 tex and DES synergistic PAA degumming having the lowest line density of 50.07 tex. Fibers prepared by conventional degumming had the highest moisture regain of 9.39% and DES had the lowest moisture regain of 6.55%. Fibers prepared by DES synergistic PAA degumming had the highest stress, strain and breaking strengths of 236.35 MPa, 1.8% and 2.98 cN/dtex, respectively.

Conclusion DES synergistic PAA degumming can more effectively extract natural bamboo fibers. Compared to conventional delignification processes, this method has advantages of lower chemical usage, reduced pollution and shorter processing time. It provides positive guidance for the preparation and development of spinnable natural bamboo fibers.

Key words: natural bamboo fiber, degumming, pretreatment, deep eutectic solvent, peroxyacetic acid

中图分类号: 

  • TS102

图1

竹原纤维制备流程图"

图2

竹原纤维实物图"

图3

竹片和不同脱胶方法所得竹原纤维的红外光谱图"

图4

竹片和不同竹原纤维化学成分"

图5

不同竹原纤维表面的SEM照片"

图6

竹片和不同竹原纤维X射线衍射图"

表1

竹片和不同竹原纤维的结晶度"

样品编号 结晶度/%
0# 60.59
1# 67.94
2# 67.94
3# 69.22
4# 62.42

表2

不同竹原纤维的长度、线密度和回潮率"

样品编号 长度/cm 线密度/tex 回潮率/%
1# 6.97±0.47 123.98±24.23 6.55±0.30
2# 4.15±0.79 58.82±6.85 8.20±0.66
3# 6.19±0.65 50.07±7.06 7.52±0.34
4# 6.72±0.37 68.76±3.56 9.39±0.49

表3

不同竹原纤维的力学性能"

样品
编号
断裂应力/
MPa
断裂
伸长率/%
断裂强度/
(cN·dtex-1)
1# 172.24±23.90 0.81±0.05 1.74±0.18
2# 88.98±24.52 1.41±0.18 1.20±0.37
3# 236.35±50.77 1.80±0.36 2.98±0.35
4# 150.44±20.90 1.03±0.09 2.42±0.38
[1] 陈子晗, 姚勇波, 生俊露, 等. 纤维素/海藻酸钙共混纤维的制备及其性能[J]. 纺织学报, 2021, 42(12): 15-20.
doi: 10.13475/j.fzxb.20210204706
CHEN Zihan, YAO Yongbo, SHENG Junlu, et al. Preparation and properties of cellulose/calcium alginate blend fiber[J]. Journal of Textile Research, 2021, 42(12): 15-20.
doi: 10.13475/j.fzxb.20210204706
[2] LIU Lifang, WANG Qianli, CHENG Longdi, et al. Modification of natural bamboo fibers for textile applications[J]. Fibers and Polymers, 2011, 12(1): 95-103.
[3] LI Zhihan, CHEN Chaoji, XIE Hua, et al. Sustainable high-strength macrofibres extracted from natural bam-boo[J]. Nature Sustainability, 2021, 5(3): 235-44.
[4] 蒲海红, 贺芃鑫, 宋柏青, 等. 纤维素/碳纳米管复合纤维的制备及其功能化应用[J]. 纺织学报, 2023, 44(1): 79-86.
PU Haihong, HE Pengxin, SONG Baiqing, et al. Preparation of cellulose/carbon nanotube composite fiber and its functional applications[J]. Journal of Textile Research, 2023, 44(1): 79-86.
[5] MISHRA Rajesh, BEHERA B K, PADA PAL Bishnu. Novelty of bamboo fabric[J]. Journal of The Textile Institute, 2011, 103: 320-329.
[6] LI Zhaoling, MENG Chaoran, ZHOU Jiajia, et al. Characterization and control of oxidized cellulose in ramie fibers during oxidative degumming[J]. Textile Research Journal, 2016, 87(15): 1828-1840.
[7] LIN Guyu, TANG Qi, HUANG He, et al. One-step extraction of ramie cellulose fibers and reutilization of degumming solution[J]. Textile Research Journal, 2022, 92(19/20): 3579-3590.
[8] SONG Yan, JIANG Wei, ZHANG Yuanming, et al. Isolation and characterization of cellulosic fibers from kenaf bast using steam explosion and Fenton oxidation treatment[J]. Cellulose, 2018, 25(9): 4979-4992.
[9] LI Panpan, SIRVIö Juho Antti, ASANTE Bright, et al. Recyclable deep eutectic solvent for the production of cationic nanocelluloses[J]. Carbohydrate Polymers, 2018, 199: 219-227.
doi: S0144-8617(18)30815-4 pmid: 30143124
[10] NIE Kai, LIU Bingxu, ZHAO Tao, et al. A facile degumming method of kenaf fibers using deep eutectic solution[J]. Journal of Natural Fibers, 2020, 19(3): 1115-1125.
[11] SONG Yan, JIANG Wei, NIE Kai, et al. An alkali-free method to manufacture ramie fiber[J]. Textile Research Journal, 2018, 89(17): 3653-3659.
[12] HUANG He, TANG Qi, LIN Guyu, et al. High-efficiency and recyclable ramie cellulose fiber degumming enabled by deep eutectic solvent[J]. Industrial Crops and Products, 2021. DOI: 10.1016/j.indcrop.2021.13879.
[13] FRANCISCO María, VAN Den Bruinhorst Adriaan, KROON Maaike C. New natural and renewable low transition temperature mix-tures (LTTMs): screening as solvents for lignocellulosic biomass processing[J]. Green Chemistry, 2012. DOI: 10.1039/c2gc35660k.
[14] LIU Qian, YUAN Tao, FU Qinjin, et al. Choline chloride-lactic acid deep eutectic solvent for delignification and nanocellulose production of moso bamboo[J]. Cellulose, 2019, 26(18): 9447-62.
doi: 10.1007/s10570-019-02726-0
[15] PASCOLI Danielle U, DICHIARA Anthony, ROUMELI Eleftheria, et al. Lignocellulosic nanomaterials production from wheat straw via peracetic acid pretreatment and their application in plastic compo-sites[J]. Carbohydrate Polymers, 2022. DOI: 10.1016/j.carbpol.2022.119857.
[16] LIU Zhuang, HOU Yi, HU Songqing, et al. Possible dissolution mechanism of alkali lignin in lactic acid-choline chloride under mild conditions[J]. RSC Advances, 2020, 10(67): 40649-40657.
doi: 10.1039/d0ra07808e pmid: 35519228
[17] MUNA N, FAUZI A A N, SETYANINGSIH D, et al. Isolation of microfibrilated cellulose from oil palm empty fruit bunches (EFB) through peracetic acid delignification and enzyme hydrolysis[J]. IOP Conference Series: Earth and Environmental Science, 2019. DOI: 10.1088/1755-1315/309/1/012063.
[18] QU Yongshuai, YIN Weilun, ZHANG Ruiyun, et al. Isolation and characterization of cellulosic fibers from ramie using organosolv degumming process[J]. Cellulose, 2019, 27(3): 1225-1237.
[19] 王春红, 陈祯, 李园平, 等. 竹原纤维的分级提取及其性能[J]. 纺织学报, 2017, 38(11): 9-15.
doi: 10.13475/j.fzxb.20170201707
WANG Chunhong, CHEN Zhen, LI Yuanping, et al. Classified extraction and properties of bamboo fiber[J]. Journal of Textile Research, 2017, 38(11): 9-15.
[20] AN Xingye, LIU Jing, LIU Liqin, et al. Improving the flexibility of bamboo mechanical pulp fibers for production of high soft tissue handsheets[J]. Industrial Crops and Products, 2020. DOI: 10.1016/j.indcrop.2020.112410.
[21] JIANG Wei, SONG Yan, LIU Shaoyang, et al. A green degumming process of ramie[J]. Industrial Crops and Products, 2018, 120: 131-134.
[22] FU Jiajia, LI Xiaoqiang, GAO Weidong, et al. Bio-processing of bamboo fibres for textile applications: a mini review[J]. Biocatalysis and Biotransformation, 2012, 30(1): 141-153.
[23] ROCKY Bahrum Prang, THOMPSON Amanda J. Production and modification of natural bamboo fibers from four bamboo species, and their prospects in textile manufacturing[J]. Fibers and Polymers, 2020, 21(12): 2740-52.
[24] YE Xinyao, ZHU Enqing, WANG Dawei, et al. Cationic functionalized bamboo fibers with spinnable and antibacterial properties prepared in chlorocholine chloride/urea deep eutectic solvent[J]. Industrial Crops and Products, 2022. DOI: 10.1016/j.indcrop.2022.115607.
[25] YUAN Jing, CHEN Qi, FANG Changhua, et al. Effect of chemical composition of bamboo fibers on water sorption[J]. Cellulose, 2021, 28(11): 7273-7282.
[26] HU Min, WANG Chunhong, LU Chao, et al. Investigation on the classified extraction of the bamboo fiber and its properties[J]. Journal of Natural Fibers, 2019, 17(12): 1798-808.
[1] 杨培芹, 潘志娟. 丁香酚/桑皮微纳米纤维膜的制备及其性能[J]. 纺织学报, 2024, 45(08): 72-80.
[2] 杨树, 曹巧丽, 李季媛, 李召岭, 郁崇文, 张阳. 亚麻催化氧化与碱煮一浴脱胶工艺及其性能[J]. 纺织学报, 2024, 45(03): 87-96.
[3] 卜凡, 应丽丽, 李长龙, 王宗乾. 羽绒在乳酸/半胱氨酸低共熔溶剂中的溶解行为及其机制[J]. 纺织学报, 2023, 44(10): 24-30.
[4] 程芬, 张兴群, 王云龙, 王颖. 罗布麻微生物脱胶的菌种筛选与工艺优化[J]. 纺织学报, 2022, 43(12): 82-87.
[5] 胡倩, 杨涛语, 朱斐超, 吕汪洋, 吴明华, 余德游. 混合价态铁基金属有机框架催化过氧乙酸高效降解对硝基苯酚[J]. 纺织学报, 2022, 43(11): 133-140.
[6] 施朝禾, 秦智慧, 赵树元, 刘柳, 张瑞云, 程隆棣. 不同醇及助剂对大麻有机溶剂脱胶效果的影响[J]. 纺织学报, 2022, 43(10): 77-82.
[7] 孙颖, 李端鑫, 于洋, 陈嘉琳, 范皖月. 大麻纤维的芬顿法脱胶及其性能[J]. 纺织学报, 2022, 43(08): 95-100.
[8] 李艾元, 施心雨, 岳万福, 游卫云. 丝素蛋白水凝胶支架的制备及其性能[J]. 纺织学报, 2022, 43(06): 44-48.
[9] 何俊燕, 李明福, 连文伟, 黄涛, 张劲. 菠萝叶纤维的超声波辅助化学脱胶工艺[J]. 纺织学报, 2021, 42(09): 83-89.
[10] 武守营, 张琳萍, 徐红, 钟毅, 毛志平. 金属配合物催化棉织物低温漂白研究进展[J]. 纺织学报, 2021, 42(03): 27-35.
[11] 刘丽宾, 吕汪洋, 陈文兴. 棉针织物漂白中铜配合物催化降解木质素及其模型化合物[J]. 纺织学报, 2021, 42(03): 1-8.
[12] 张滕家璐, 吴伟, 钟毅, 毛志平, 徐红. 平幅前处理对棉针织物染色性能的影响[J]. 纺织学报, 2021, 42(03): 9-13.
[13] 刘芳, 马颜雪, 陈小光, 刘书惠, 张益榛, 任志鹏, 李康琪, 童艺翾, 任泺彤, 李毓陵. 苎麻纤维厌氧生物脱胶系统工艺性能研究[J]. 纺织学报, 2020, 41(11): 89-94.
[14] 屈永帅, 施朝禾, 张瑞云, 赵树元, 刘柳. 蒽醌助剂对乙二醇溶剂脱胶苎麻纤维性能的影响[J]. 纺织学报, 2020, 41(11): 81-88.
[15] 张娟, 郑环达, 乔燕, 高世会, 郑来久. 亚麻粗纱的超临界CO2煮漂工艺[J]. 纺织学报, 2020, 41(07): 93-101.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!