纺织学报 ›› 2024, Vol. 45 ›› Issue (09): 106-112.doi: 10.13475/j.fzxb.20231105101
尹祥1, 朱恩清1,2, 杨静2, 杨海艳2, 王大伟2, 石纯2, 史正军1,2()
YIN Xiang1, ZHU Enqing1,2, YANG Jing2, YANG Haiyan2, WANG Dawei2, SHI Chun2, SHI Zhengjun1,2()
摘要:
针对传统竹原纤维制备过程能耗大、污染环境、时间长,且获得的纤维表面粗糙、长度低等问题,构建了氯化胆碱-乳酸低共熔溶剂(DES)脱胶、过氧乙酸(PAA)脱胶、DES协同PAA脱胶3种绿色脱胶方法。通过傅里叶变换红外光谱、扫描电子显微镜和X射线衍射仪等测试手段,对采用传统方法和3种不同绿色脱胶工艺所得纤维的理化性能进行了测试和表征。研究结果表明:制备竹原纤维的4种方法均可去除胶质部分,经DES溶剂脱胶可有效脱除竹原纤维的半纤维素,但木质素残余量高,PAA脱除木质素的效率最高,DES协同PAA脱胶制备的纤维素含量最高;随着竹原纤维无定形区域胶质部分的脱除,4种脱胶方式均可提高纤维的相对结晶度,但传统脱胶制备的纤维结晶度变化最小;DES协同PAA脱胶制备的纤维线密度最低(50.07 tex),断裂强度最高(2.98 cN/dtex),具有最佳的可纺性能。
中图分类号:
[1] |
陈子晗, 姚勇波, 生俊露, 等. 纤维素/海藻酸钙共混纤维的制备及其性能[J]. 纺织学报, 2021, 42(12): 15-20.
doi: 10.13475/j.fzxb.20210204706 |
CHEN Zihan, YAO Yongbo, SHENG Junlu, et al. Preparation and properties of cellulose/calcium alginate blend fiber[J]. Journal of Textile Research, 2021, 42(12): 15-20.
doi: 10.13475/j.fzxb.20210204706 |
|
[2] | LIU Lifang, WANG Qianli, CHENG Longdi, et al. Modification of natural bamboo fibers for textile applications[J]. Fibers and Polymers, 2011, 12(1): 95-103. |
[3] | LI Zhihan, CHEN Chaoji, XIE Hua, et al. Sustainable high-strength macrofibres extracted from natural bam-boo[J]. Nature Sustainability, 2021, 5(3): 235-44. |
[4] | 蒲海红, 贺芃鑫, 宋柏青, 等. 纤维素/碳纳米管复合纤维的制备及其功能化应用[J]. 纺织学报, 2023, 44(1): 79-86. |
PU Haihong, HE Pengxin, SONG Baiqing, et al. Preparation of cellulose/carbon nanotube composite fiber and its functional applications[J]. Journal of Textile Research, 2023, 44(1): 79-86. | |
[5] | MISHRA Rajesh, BEHERA B K, PADA PAL Bishnu. Novelty of bamboo fabric[J]. Journal of The Textile Institute, 2011, 103: 320-329. |
[6] | LI Zhaoling, MENG Chaoran, ZHOU Jiajia, et al. Characterization and control of oxidized cellulose in ramie fibers during oxidative degumming[J]. Textile Research Journal, 2016, 87(15): 1828-1840. |
[7] | LIN Guyu, TANG Qi, HUANG He, et al. One-step extraction of ramie cellulose fibers and reutilization of degumming solution[J]. Textile Research Journal, 2022, 92(19/20): 3579-3590. |
[8] | SONG Yan, JIANG Wei, ZHANG Yuanming, et al. Isolation and characterization of cellulosic fibers from kenaf bast using steam explosion and Fenton oxidation treatment[J]. Cellulose, 2018, 25(9): 4979-4992. |
[9] |
LI Panpan, SIRVIö Juho Antti, ASANTE Bright, et al. Recyclable deep eutectic solvent for the production of cationic nanocelluloses[J]. Carbohydrate Polymers, 2018, 199: 219-227.
doi: S0144-8617(18)30815-4 pmid: 30143124 |
[10] | NIE Kai, LIU Bingxu, ZHAO Tao, et al. A facile degumming method of kenaf fibers using deep eutectic solution[J]. Journal of Natural Fibers, 2020, 19(3): 1115-1125. |
[11] | SONG Yan, JIANG Wei, NIE Kai, et al. An alkali-free method to manufacture ramie fiber[J]. Textile Research Journal, 2018, 89(17): 3653-3659. |
[12] | HUANG He, TANG Qi, LIN Guyu, et al. High-efficiency and recyclable ramie cellulose fiber degumming enabled by deep eutectic solvent[J]. Industrial Crops and Products, 2021. DOI: 10.1016/j.indcrop.2021.13879. |
[13] | FRANCISCO María, VAN Den Bruinhorst Adriaan, KROON Maaike C. New natural and renewable low transition temperature mix-tures (LTTMs): screening as solvents for lignocellulosic biomass processing[J]. Green Chemistry, 2012. DOI: 10.1039/c2gc35660k. |
[14] |
LIU Qian, YUAN Tao, FU Qinjin, et al. Choline chloride-lactic acid deep eutectic solvent for delignification and nanocellulose production of moso bamboo[J]. Cellulose, 2019, 26(18): 9447-62.
doi: 10.1007/s10570-019-02726-0 |
[15] | PASCOLI Danielle U, DICHIARA Anthony, ROUMELI Eleftheria, et al. Lignocellulosic nanomaterials production from wheat straw via peracetic acid pretreatment and their application in plastic compo-sites[J]. Carbohydrate Polymers, 2022. DOI: 10.1016/j.carbpol.2022.119857. |
[16] |
LIU Zhuang, HOU Yi, HU Songqing, et al. Possible dissolution mechanism of alkali lignin in lactic acid-choline chloride under mild conditions[J]. RSC Advances, 2020, 10(67): 40649-40657.
doi: 10.1039/d0ra07808e pmid: 35519228 |
[17] | MUNA N, FAUZI A A N, SETYANINGSIH D, et al. Isolation of microfibrilated cellulose from oil palm empty fruit bunches (EFB) through peracetic acid delignification and enzyme hydrolysis[J]. IOP Conference Series: Earth and Environmental Science, 2019. DOI: 10.1088/1755-1315/309/1/012063. |
[18] | QU Yongshuai, YIN Weilun, ZHANG Ruiyun, et al. Isolation and characterization of cellulosic fibers from ramie using organosolv degumming process[J]. Cellulose, 2019, 27(3): 1225-1237. |
[19] |
王春红, 陈祯, 李园平, 等. 竹原纤维的分级提取及其性能[J]. 纺织学报, 2017, 38(11): 9-15.
doi: 10.13475/j.fzxb.20170201707 |
WANG Chunhong, CHEN Zhen, LI Yuanping, et al. Classified extraction and properties of bamboo fiber[J]. Journal of Textile Research, 2017, 38(11): 9-15. | |
[20] | AN Xingye, LIU Jing, LIU Liqin, et al. Improving the flexibility of bamboo mechanical pulp fibers for production of high soft tissue handsheets[J]. Industrial Crops and Products, 2020. DOI: 10.1016/j.indcrop.2020.112410. |
[21] | JIANG Wei, SONG Yan, LIU Shaoyang, et al. A green degumming process of ramie[J]. Industrial Crops and Products, 2018, 120: 131-134. |
[22] | FU Jiajia, LI Xiaoqiang, GAO Weidong, et al. Bio-processing of bamboo fibres for textile applications: a mini review[J]. Biocatalysis and Biotransformation, 2012, 30(1): 141-153. |
[23] | ROCKY Bahrum Prang, THOMPSON Amanda J. Production and modification of natural bamboo fibers from four bamboo species, and their prospects in textile manufacturing[J]. Fibers and Polymers, 2020, 21(12): 2740-52. |
[24] | YE Xinyao, ZHU Enqing, WANG Dawei, et al. Cationic functionalized bamboo fibers with spinnable and antibacterial properties prepared in chlorocholine chloride/urea deep eutectic solvent[J]. Industrial Crops and Products, 2022. DOI: 10.1016/j.indcrop.2022.115607. |
[25] | YUAN Jing, CHEN Qi, FANG Changhua, et al. Effect of chemical composition of bamboo fibers on water sorption[J]. Cellulose, 2021, 28(11): 7273-7282. |
[26] | HU Min, WANG Chunhong, LU Chao, et al. Investigation on the classified extraction of the bamboo fiber and its properties[J]. Journal of Natural Fibers, 2019, 17(12): 1798-808. |
[1] | 杨培芹, 潘志娟. 丁香酚/桑皮微纳米纤维膜的制备及其性能[J]. 纺织学报, 2024, 45(08): 72-80. |
[2] | 杨树, 曹巧丽, 李季媛, 李召岭, 郁崇文, 张阳. 亚麻催化氧化与碱煮一浴脱胶工艺及其性能[J]. 纺织学报, 2024, 45(03): 87-96. |
[3] | 卜凡, 应丽丽, 李长龙, 王宗乾. 羽绒在乳酸/半胱氨酸低共熔溶剂中的溶解行为及其机制[J]. 纺织学报, 2023, 44(10): 24-30. |
[4] | 程芬, 张兴群, 王云龙, 王颖. 罗布麻微生物脱胶的菌种筛选与工艺优化[J]. 纺织学报, 2022, 43(12): 82-87. |
[5] | 胡倩, 杨涛语, 朱斐超, 吕汪洋, 吴明华, 余德游. 混合价态铁基金属有机框架催化过氧乙酸高效降解对硝基苯酚[J]. 纺织学报, 2022, 43(11): 133-140. |
[6] | 施朝禾, 秦智慧, 赵树元, 刘柳, 张瑞云, 程隆棣. 不同醇及助剂对大麻有机溶剂脱胶效果的影响[J]. 纺织学报, 2022, 43(10): 77-82. |
[7] | 孙颖, 李端鑫, 于洋, 陈嘉琳, 范皖月. 大麻纤维的芬顿法脱胶及其性能[J]. 纺织学报, 2022, 43(08): 95-100. |
[8] | 李艾元, 施心雨, 岳万福, 游卫云. 丝素蛋白水凝胶支架的制备及其性能[J]. 纺织学报, 2022, 43(06): 44-48. |
[9] | 何俊燕, 李明福, 连文伟, 黄涛, 张劲. 菠萝叶纤维的超声波辅助化学脱胶工艺[J]. 纺织学报, 2021, 42(09): 83-89. |
[10] | 武守营, 张琳萍, 徐红, 钟毅, 毛志平. 金属配合物催化棉织物低温漂白研究进展[J]. 纺织学报, 2021, 42(03): 27-35. |
[11] | 刘丽宾, 吕汪洋, 陈文兴. 棉针织物漂白中铜配合物催化降解木质素及其模型化合物[J]. 纺织学报, 2021, 42(03): 1-8. |
[12] | 张滕家璐, 吴伟, 钟毅, 毛志平, 徐红. 平幅前处理对棉针织物染色性能的影响[J]. 纺织学报, 2021, 42(03): 9-13. |
[13] | 刘芳, 马颜雪, 陈小光, 刘书惠, 张益榛, 任志鹏, 李康琪, 童艺翾, 任泺彤, 李毓陵. 苎麻纤维厌氧生物脱胶系统工艺性能研究[J]. 纺织学报, 2020, 41(11): 89-94. |
[14] | 屈永帅, 施朝禾, 张瑞云, 赵树元, 刘柳. 蒽醌助剂对乙二醇溶剂脱胶苎麻纤维性能的影响[J]. 纺织学报, 2020, 41(11): 81-88. |
[15] | 张娟, 郑环达, 乔燕, 高世会, 郑来久. 亚麻粗纱的超临界CO2煮漂工艺[J]. 纺织学报, 2020, 41(07): 93-101. |
|