纺织学报 ›› 2024, Vol. 45 ›› Issue (04): 15-23.doi: 10.13475/j.fzxb.20231200101

• 纺织科技新见解学术沙龙专栏:绿色功能与智能纺织品 • 上一篇    下一篇

基于复合纳米纤维膜的离子传感器制备及其性能

梁文静1,2, 吴俊贤1,2, 何崟1,2(), 刘皓1,2   

  1. 1.天津工业大学 纺织科学与工程学院, 天津 300387
    2.天津工业大学智能可穿戴电子纺织品研究所, 天津 300387
  • 收稿日期:2023-12-04 修回日期:2024-01-23 出版日期:2024-04-15 发布日期:2024-05-13
  • 通讯作者: 何崟(1985—),女,副教授,博士。主要研究方向为智能纺织品与服装、可穿戴传感材料及电子器件。E-mail:heyin@tiangong.edu.cn。
  • 作者简介:梁文静(1997—),女,硕士生。主要研究方向为智能可穿戴纺织品。
  • 基金资助:
    国家自然科学基金项目(52203276);天津市科委科技人员服务企业项目(22YDTPJC00560);中国博士后基金项目(2021M691699)

Preparation and performance of ion sensors based on composite nanofiber membranes

LIANG Wenjing1,2, WU Junxian1,2, HE Yin1,2(), LIU Hao1,2   

  1. 1. School of Textile Science and Engineering, Tiangong University, Tianjin 300387, China
    2. Institute of Smart Wearable Electronic Textiles, Tiangong University, Tianjin 300387, China
  • Received:2023-12-04 Revised:2024-01-23 Published:2024-04-15 Online:2024-05-13

摘要:

为开发具有高稳定性、高灵敏度的柔性离子传感器,采用静电纺丝法制备聚偏二氟乙烯(PVDF)/离子液体(IL)复合纳米纤维膜,与电极材料组装成三明治结构的离子传感器。探讨了纺丝液质量分数及IL含量对纺丝工艺和纤维膜形貌的影响;其次利用能量色散X射线光谱仪和红外光谱仪表征了复合纳米纤维膜所含元素分布与化学结构;进一步利用柔性传感器测试系统探究了不同IL含量、不同厚度的纳米纤维膜对于传感器性能的影响。结果表明:在PVDF质量分数为18%~19%,且与离子液体量比为2∶1或3∶1时,复合纳米纤维膜表面规整,串珠少,纤维直径分布均匀,带电离子数量增多且分布均匀;随着PVDF/IL纳米纤维膜的厚度增加,离子传感器的检测范围逐渐增大,灵敏度逐渐降低;在聚偏二氟乙烯质量分数为18%,且与离子液体的量比为2∶1时,离子传感器在 0~40 kPa 的检测范围内具有32.471 pF/kPa灵敏度的压力感测,在5 000次加载-循环中保持突出的力学稳定性,并且可应用于分辨人体关节运动的检测。

关键词: 聚偏二氟乙烯, 离子液体, 静电纺丝, 纳米纤维膜, 柔性离子传感器

Abstract:

Objective In order to develop a flexible ion sensor with high stability and sensitivity, polyvinylidene fluoride ionic liquid ((PVDF)/IL) composite nanofibrous membranes were prepared by electrostatic spinning, and assembled with electrode materials to form an ion sensor with a sandwich structure.

Method The effects of spinning liquid mass fraction and IL content on the spinning process and fibrous membrane morphology were investigated using scanning electron microscopy, and the elemental distribution and chemical structure of the composite nanofibrous membranes were characterized using energy dispersive X-ray spectroscopy and Fourier transform infrared spectroscopy. The effects of nanofibrous membranes with different IL contents and thicknesses on the sensor performance were investigated using the flexible sensor test system (FSTS), and the ion sensors were attached to human skin and clothes for body signals and motion monitoring, and the real-time output electrical signals were recorded using the FSTS.

Results When the mass ratio of PVDF was 18%-19% and the dosage ratio of ionic liquid was 2∶1 and 3∶1, the composite nanofibrous membranes had a regular surface, fewer beads, and a uniform distribution of fibre diameters. The addition of ionic liquid increased the number of charged ions in the PVDF nanofibre membranes and made them uniformly distributed. The pressure sensing sensitivity of the ion sensor in the detection range of 0-40 kPa was 32.471 pF/kPa at a PVDF mass fraction of 18% and an ionic liquid dosage ratio of 2∶1. The increase in ionic liquid content in the composite nanofibrous membrane ion sensor resulted in a significant increase in the sensitivity of the sensor. As the thickness of the nanofibre membrane increases, the detection range of the sensor gradually increases and the sensitivity gradually decreases. The hysteresis of the ion sensor was 6.64% with no significant delay or dependence at different pressure levels, with compression rate of 5 000 loading cycles. Ion sensors attached to the surface of human skin and clothing was able to distinguish the motion of the human body by the output pressure-capacitance curves.

Conclusion The composite nanofibre membrane-based ion sensor exploits the supercapacitive property of the electric double layer (EDL) to accurately detect small-amplitude human motion and large-amplitude joint motion. Meanwhile, the composite nanofibre membrane ion sensor has a pressure sensing with a sensitivity of 32.471 pF/kPa in the detection range of 0-40 kPa, maintains outstanding mechanical stability after 5 000 loading-cycles, has a low hysteresis rate (6.64%) and has no significant delay and dependence. The membrane can be applied in the future to communication with deaf people, human-computer interaction, intelligent control and other fields.

Key words: polyvinylidene fluoride, ionic liquid, electrostatic spinning, nanofiber membrane, flexible ion sensor

中图分类号: 

  • TS179

图1

纳米纤维膜离子传感器"

图2

不同质量分数PVDF纳米纤维膜的SEM照片(×8 500)和纤维直径分布图"

图3

PVDF与IL量比不同时复合纳米纤维膜的SEM照片(×8 500)和纤维直径分布图"

图4

纳米纤维膜的元素分布"

图5

PVDF与IL量比不同时复合纳米纤维膜的红外光谱图"

图6

复合纳米纤维膜离子传感器等效电距及传感原理图"

图7

PVDF与IL量比不同时离子传感器的压力-电容变化图"

表1

不同压力下不同IL含量的离子传感器的灵敏度"

PVDF与IL量比 不同压力下的灵敏度/(pF·kPa-1)
0~5 kPa 5~25 kPa 25~40 kPa
2∶1 32.471 26.655 1.397
3∶1 21.499 11.085 2.667
4∶1 6.211 1.649 0.544
1∶0 0.356 0.176 0.016

图8

不同厚度复合纳米纤维膜离子传感器的压力-电容变化图"

图9

复合纳米纤维膜离子传感器的迟滞曲线"

图10

复合纳米纤维膜离子传感器的电容变化图"

图11

复合纳米纤维膜离子传感器加载-卸载循环的电容变化图"

图12

复合纳米纤维膜离子传感器在不同应用测试下的电容变化"

图13

多次弯曲循环下复合纳米纤维膜离子传感器的电容变化"

图14

不同温湿度下复合纳米纤维膜离子传感器的电容变化"

[1] HE Yin, WU Junxian, LIN Meixia, et al. Ionic flexible force sensors and their potential applications[J]. Journal of Materials Chemistry C, 2021, 9(46): 16378-16390.
[2] XIANG Shuangfei, ZHENG Feng, CHEN Shuangshuang, et al. Self-healable, recyclable, and ultrastrong adhesive ionogel for multifunctional strain sensor[J]. ACS Applied Materials & Interfaces, 2021, 13(17): 20653-20661.
[3] NIU Chao, AN Li, ZHANG Huijuan. Mechanically robust, antifatigue, and temperature-tolerant nanocomposite ionogels enabled by hydrogen bonding as wearable sensors[J]. ACS Applied Polymer Materials, 2022, 4(6): 4189-4198.
[4] CHO Sunghwan, LEE Seunwon, YU Seunggun, et al. Micropatterned pyramidal ionic gels for sensing broad-range pressures with high sensitivity[J]. ACS Applied Materials & Interfaces, 2017, 9(11): 10128-10135.
[5] YUAN Shen, BAI Ju, LI Shengzhao, et al. A multifunctional and selective ionic flexible sensor with high environmental suitability for tactile perception[J]. Advanced Functional Materials, 2023. DOI: 10.1002/adfm.202309626.
[6] SUN Lijie, HUANG Hongfei, DING Qiyu, et al. Highly transparent, stretchable, and self-healable ionogel for multifunctional sensors, triboelectric nanogenerator, and wearable fibrous electronics[J]. Advanced Fiber Materials, 2021, 4(1): 98-107.
[7] LI Caicong, CHENG Jianxiang, HE Yunfeng, et al. Polyelectrolyte elastomer-based ionotronic sensors with multi-mode sensing capabilities via multi-material 3D printing[J]. Nature Communications, 2023. DOI: 10.1038/s41467-023-40583-5.
[8] ZHOU Qun, CHEN Tianjiao, CAO Shaojie, et al. A novel flexible piezoresistive pressure sensor based on PVDF/PVA-CNTs electrospun composite film[J]. Applied Physics a-Materials Science & Processing, 2021. DOI: 10.1007/s00339-021-04797-y.
[9] LIU Qingxian, LIU Zhiguang, LI Chenggao, et al. Highly transparent and flexible iontronic pressure sensors based on an opaque to transparent transition[J]. Advanced Science, 2020. DOI:10.1002/advs.202000348.
[10] 闫迪, 王雪芳, 谭文萍, 等. 富咪唑型多孔左旋聚乳酸纳米纤维膜制备及其双重净水性能[J]. 纺织学报, 2023.DOI:10.13475/j.fzxb.20230200101.
YAN Di, WANG Xuefang, TAN Wenping, et al. Preparation of porous poly(L-lactic acid) nanofiber membranes with rich imidazole groups and dual performances in water purification[J]. Journal of Textile Research, 2023.DOI:10.13475/j.fzxb.20230200101.
[11] UZABAKIRIHO Pierre Claver, WANG Meng, MA Chao, et al. Stretchable, breathable, and highly sensitive capacitive and self-powered electronic skin based on core-shell nanofibers[J]. Nanoscale, 2022, 14(17): 6600-6611.
[12] FU Xiang, ZHANG Jiqiang, XIAO Jianliang, et al. A high-resolution, ultrabroad-range and sensitive capacitive tactile sensor based on a CNT/PDMS composite for robotic hands[J]. Nanoscale, 2021, 13(44): 18780-18788.
doi: 10.1039/d1nr03265h pmid: 34750598
[13] 徐瑞东, 王航, 曲丽君, 等. 聚乳酸非织造基材触摸传感电子织物制备及其性能[J]. 纺织学报, 2023, 44(9):161-167.
XU Ruidong, WANG Hang, QU Lijun, et al. Preparation and properties of polyactie acid nonwoven substratetouch-sensing electronic textile[J]. Journal of Textile Research, 2023, 44(9):161-167.
[14] WAN Xiaoqian, CONG Honglian, JIANG Gaoming, et al. A review on PVDF nanofibers in textiles for flexible piezoelectric sensors[J]. ACS Applied Nano Materials, 2023, 6(3): 1522-1540.
[15] CHANG Yu, WANG Liu, LI Ruya, et al. First decade of interfacial iontronic sensing: from droplet sensors to artificial skins[J]. Advanced Materials, 2020. DOI: 10.1002/adma.202003464.
[16] 黄耀丽, 陆诚, 蒋金华, 等. 聚酰亚胺纤维增强聚二甲基硅氧烷柔性复合膜的热力学性能[J]. 纺织学报, 2022, 43(6): 22-28.
HUANG Yaoli, LU Cheng, JIANG Jinhua, et al. Thermal mechanical properties of polyimide fiber-reinforced polydimethylsiloxane flexible film[J]. Journal of Textile Research, 2022, 43(6): 22-28.
[1] 贾琳, 董晓, 王西贤, 张海霞, 覃小红. 聚己内酯/MgO复合纳米纤维膜的制备及其性能[J]. 纺织学报, 2024, 45(04): 59-66.
[2] 陆瑶瑶, 叶俊涛, 阮承祥, 娄瑾. 二氧化钛/多孔碳纳米纤维复合材料的制备及其光催化性能[J]. 纺织学报, 2024, 45(04): 67-75.
[3] 宋贝贝, 赵浩阅, 李欣宇, 屈展, 方剑. 载有MXene的钴氮掺杂碳纳米纤维在锂硫电池中的应用[J]. 纺织学报, 2024, 45(04): 24-32.
[4] 杨琪, 邓南平, 程博闻, 康卫民. 树枝状磺化聚醚砜纤维基复合固态电解质的制备及其性能[J]. 纺织学报, 2024, 45(03): 1-10.
[5] 赵美奇, 陈莉, 钱现, 李晓娜, 杜迅. 用于铜离子检测的静电纺纤维膜制备及其性能[J]. 纺织学报, 2024, 45(03): 11-18.
[6] 韩俊峰, 王云霞, 吴伟, 胡超凡, 封其春, 杜兆芳. 纤维素/茶渣复合薄膜的可控制备及其食品保鲜性能[J]. 纺织学报, 2024, 45(03): 28-35.
[7] 田博阳, 王向泽, 杨湙雯, 吴晶. 非对称结构纤维膜的制备及其热调控性能[J]. 纺织学报, 2024, 45(02): 11-20.
[8] 周歆如, 范梦晶, 岳欣琰, 洪剑寒, 韩潇. 导电微纳纤维复合纱的制备及其气敏特性[J]. 纺织学报, 2024, 45(02): 52-58.
[9] 戎成宝, 孙辉, 于斌. 银-铜双金属纳米粒子/聚乳酸复合纳米纤维膜的制备及其抗菌性能[J]. 纺织学报, 2024, 45(01): 48-55.
[10] 陈江萍, 郭朝阳, 张琪骏, 吴仁香, 钟鹭斌, 郑煜铭. 静电纺聚酰胺6/聚苯乙烯复合纳米纤维膜制备及其空气过滤性能[J]. 纺织学报, 2024, 45(01): 56-64.
[11] 王鹏, 申佳锟, 陆银辉, 盛红梅, 王宗乾, 李长龙. 石墨相氮化碳/MXene/磷酸银/聚丙烯腈复合纳米纤维膜的制备及其光催化性能[J]. 纺织学报, 2023, 44(12): 10-16.
[12] 雷彩虹, 俞林双, 金万慧, 朱海霖, 陈建勇. 丝素蛋白/壳聚糖复合纤维膜的制备与应用[J]. 纺织学报, 2023, 44(11): 19-26.
[13] 徐志豪, 徐丹瑶, 李彦, 王璐. 基于表面增强拉曼光谱的纳米纤维基生物传感器的研究进展[J]. 纺织学报, 2023, 44(11): 216-224.
[14] 王西贤, 郭天光, 王登科, 牛帅, 贾琳. 聚丙烯腈/银复合纳米纤维高效滤膜的制备及其长效性能[J]. 纺织学报, 2023, 44(11): 27-35.
[15] 范梦晶, 吴玲娅, 周歆如, 洪剑寒, 韩潇, 王建. 镀银聚酰胺6/聚酰胺6纳米纤维包芯纱电容传感器的构筑[J]. 纺织学报, 2023, 44(11): 67-73.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!