纺织学报 ›› 2024, Vol. 45 ›› Issue (10): 170-176.doi: 10.13475/j.fzxb.20231200401

• 服装工程 • 上一篇    下一篇

基于工艺相似性的衬衣部件模块族构建

盛锡彬1, 赵崧灵1, 顾冰菲1,2,3()   

  1. 1.浙江理工大学 服装学院, 浙江 杭州 310018
    2.浙江省哲学社会科学重点培育研究基地浙江理工大学数智风格与创意设计研究中心, 浙江 杭州 310018
    3.丝绸文化传承与产品设计数字化技术文化和旅游部重点实验室,浙江 杭州 310018
  • 收稿日期:2023-12-05 修回日期:2024-06-26 出版日期:2024-10-15 发布日期:2024-10-22
  • 通讯作者: 顾冰菲(1987—),女,副教授,博士。主要研究方向为数字化服装技术。E-mail:gubf@zstu.edu.cn
  • 作者简介:盛锡彬(1998—),男,硕士生。主要研究方向为数字化服装技术。
  • 基金资助:
    国家自然科学基金项目(61702461);中国纺织工业联合会应用基础研究项目(J202007);浙江省哲学社会科学规划艺术学课题资助项目(24NDJC171YB);浙江理工大学科研业务费专项资金资助项目(24076114Y)

Construction of shirt component module groups based on process similarity

SHENG Xibin1, ZHAO Songling1, GU Bingfei1,2,3()   

  1. 1. School of Fashion Design & Engineering, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, China
    2. Digital Intelligence Style and Creative Design Research Center, Key Research Center of Philosophy and Social Sciences, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, China
    3. Key Laboratory of Silk Culture Heritage and Products Design Digital Technology, Ministry of Culture and Tourism, Hangzhou, Zhejiang 310018, China
  • Received:2023-12-05 Revised:2024-06-26 Published:2024-10-15 Online:2024-10-22

摘要:

为建立服装生产标准工时预测模型,实现混合款式的模块化生产编排优化,提出了基于衬衣部件工艺相似性的生产工艺模块族构建方法。以550款典型衬衫款式为例,根据服装结构及裁片种类,整理各部件造型及加工种类差异,建立相关数据集。从生产角度将衬衣部件生产工艺划分为42个模块并进行编码,结合31种工艺类型构建“模块-工艺”结构矩阵,通过基于等价关系的模糊聚类及F-统计量,最终确定11类衬衣模块族。聚类结果经过验证基本符合实际生产情况,且同一模块族工序加工工艺基本类似。该研究理论可推广到成本核算、工资发放、质量评估等方面,可为服装生产编排、工期预测等提供一定的参考。

关键词: 衬衫, 款式, 工艺相似性, 模糊聚类, 模块族, 模块化生产

Abstract:

Objective Under the background of digital economy, the popularity of individual needs promotes the diversified development of clothing styles, which brings new opportunities and challenges to clothing production. At present, the clothing market as a whole presents a "multi-variety, small batch, short cycle" production mode. In order to reduce production difficulty caused by excessive style changes and to reduce production costs, industrial customization is oriented to customer demand while taking into account the production speed and economic benefits, in which modular production is one of the effective means to achieve this production mode.

Method Using the fuzzy clustering of equivalence relation, the method of building module group of shirt processing components was achieved. The typical shirt styles produced in recent years were taken as the research object, the common styles in production were sorted and classified. The main shapes and processing methods were summarized, the processing modules and stitch types were classified and coded, and the shirt modules were divided under the production situation of short flow.

Results After the basic module group and processing technology are summarized, the classification of clothing modules is quantitatively analyzed and studied. First of all, the complex process is preliminarily screened. Processing examples of different modules : 0 indicates that the module does not use this process, 1 indicates that the module will use this process for processing. The truncated matrices under different λ thresholds are established by fuzzy hierarchical matrix. The modules are clustered from large to small, and different truncated matrices are divided into different truncated matrices. A total of 19 kinds of clustering results were obtained for all types of parts (parts) modules, with a total of 42 parts (parts). On the basis of preliminary screening, fuzzy F-statistic formula was used to calculate the corresponding values of different clustering results. The optimal solution is obtained when the module group of shirt production process is divided into 11 classes. According to the results of F-statistic quantitative analysis, the division of the final module group clustering results is obtained.The final clustering results are basically consistent with the actual production, and the module processing technology in the same module group is basically similar.

Conclusion The theoretical method of this research is extended to cost accounting, wage payment, quality assessment and other aspects, and provides certain reference value for the production of clothing production arrangement, construction period forecast and other production links. In the following research, we will focus on the research direction of module family time prediction based on BP neural network and the optimization application of module production scheduling for mixed mode components.

Key words: shirt, clothing style, process similarity, fuzzy clustering, module group, modularization production

中图分类号: 

  • TS941.17

图1

模块划分款式示意图"

表1

独立加工模块分类"

部件一级编码 部件名称 部件二级编码 部件种类 部件一级编码 部件名称 部件二级编码 部件种类
a 辅件 01 洗唛 e 口袋 01 袋盖
02 主唛及尺码唛 02 贴袋
03 挂耳 f 袖衩 01 绲边袖衩
b 上级领 01 衬衫领 02 大小袖衩
c 下级领 01 衬衫领 g 边位 01 褶位
02 立领 02 省位
d 01 一片式装襟 03 分割位
02 双层装襟 h 克夫 01 一片式
前襟 03 装暗门襟 02 双层
04 连裁前襟 i 贴边 01 衣摆贴
05 连裁暗门襟 02 袖口贴
03 前襟贴

表2

复合组装模块分类"

部位一
级编码
部位
名称
部位二
级编码
部位
种类
组装
裁片
A 领圈 01 领+前片+后片
B 肩缝/
前过肩
01 前片+后片
C 袖笼 01 袖片+前片+后片
D 袖底缝 01 袖片/袖片+前片+后片
E 贴袋 01 口袋+前片
F 侧缝 01 前片+后片/袖片+前片+后片
G 袖口 01 贴边袖口 袖片(袖底缝已合好)
02 折边袖口 袖口贴+袖片
03 卷边袖口 袖片(袖底缝已合好)
04 拼接袖口 克夫+袖片
H 前中 01 装襟 门里襟+前片
02 贴边前襟 前襟贴+前片
I 01 侧衩 前片+后片
J 衣摆 01 贴边衣摆 衣摆贴+前片+后片
02 卷边衣摆 前片+后片
03 折边衣摆 前片+后片
04 绲边衣摆 前片+后片
K 后过肩 过肩+后片

表3

主要机器类型及其对应工艺"

烫台 单针平车 专机 拷边机 手工
平烫 走缩 模板合 三线拷 点位
烫倒 绱驳 走定 刀车修 五线合 修翻
烫开 夹缉 卷边器卷 双针明缉 小三线合 量剪
扣烫 折缉 网衬卷 黏合机烫衬
折烫 拉筒绲
包烫 明缉 钉/叠针
烫定 暗缉
粘衬 扪缉

表4

模块工艺加工示例"

部件 烫台 单针电脑车 拷边机 其它
包烫 扣烫 折烫 拼合 明缉 暗缉 点位 量剪
三夹领 1 1 0 0 1 1 0 0 1 0
立领 1 1 0 1 0 1 0 0 1 0
一片克夫 0 1 1 0 0 0 0 0 0 1
前襟 0 1 1 1 1 1 0 0 1 0
袖笼 0 0 0 1 1 0 1 1 0 0

表5

阈值划分的结果"

截距 类别
聚类对象
的个数
截距 类别
聚类对象
的个数
1.000 0 34 12 0.500 0 11 39
0.777 8 32 13 0.444 4 10 39
0.750 0 29 18 0.400 0 9 39
0.692 3 28 20 0.333 3 7 39
0.666 7 24 27 0.307 7 6 39
0.636 4 23 27 0.285 7 4 40
0.625 0 22 28 0.250 0 3 41
0.583 3 21 28 0.222 2 2 41
0.571 4 16 35 0.200 0 1 42
0.545 5 15 36

图2

基于模糊F-统计量确定聚类数目"

表6

模块族划分结果"

序号 各模块族中部件(部位)类别
1 E-01贴袋
2 g-01褶位
3 g-02省位
4 f-02绲边袖衩,J-04绲边衣摆
5 G-03卷边袖口,J-03卷边衣摆,I-01侧衩
6 H-01前中,A-01领圈,G-01拼接袖口
7 a-01主唛及尺码唛,a-02洗唛,a-03挂耳
8 C-01袖笼,B-01肩缝,F-01侧缝,D-01袖底缝,
K-01后过肩,g-03分割位
9 e-02口袋,d-04连裁前襟,d-05连裁暗门襟,
G-02折边袖口,J-02折边衣摆
10 h-01一片式克夫,d-01一片式装襟,d-03装暗门襟,
f-02大小袖衩,i-01下摆贴,i-02袖口贴,i-03前襟贴
11 b上级领,c下级领,h-02两片式克夫,e-01袋盖,e-02两片
式装襟,H-01贴边前襟,G-01贴边袖口,J-01贴边衣摆
[1] 刘锋, 徐杰, 柯文博. 基于深度强化学习的服装缝制过程实时动态调度[J]. 纺织学报, 2022, 43(9): 41-48.
LIU Feng, XU Jie, KE Wenbo. Real-time dynamic scheduling for garment sewing process based on deep reinforcement learning[J]. Journal of Textile Research, 2022, 43(9): 41-48.
[2] 朱光好. 我国纺织服装绿色供应链管理及对策[J]. 纺织学报, 2012, 33(10): 153-160.
ZHU Guanghao. Problems and countermeasures of environmentally conscious supply chain management of China' s textile and clothing industry[J]. Journal of Textile Research, 2012, 33(10): 153-160.
[3] XU Y N, Thomassey S, ZENG X Y. Garment mass customization methods for the cutting-related processes[J]. Textile Research Journal, 2021, 91(7/8): 802-819.
[4] LIU E, HSIAO S W. A decision support system for product family design[J]. Information Sciences, 2014, 281: 113-127.
[5] DONG B, JIA H M, LI Z, et al. Implementing mass customization in garment industry[J]. Systems Engineering Procedia, 2012, 3: 372-380.
[6] 周海媚, 徐燕妮, 张旭靖, 等. 服装款式模块化设计方法[J]. 纺织学报, 2015, 36(8): 104-109.
ZHOU Haimei, XU Yanni, ZHANG Xujing, et al. Modularized design method of garment style[J]. Journal of Textile Research, 2015, 36(8): 104-109.
[7] ZHOU H M, XU Y N, WANG L C, et al. A garment design method based on modularization[J]. Textile Research Journal, 2016, 86(16): 1710-1715.
[8] KIM H S, CHO S B. Application of interactive genetic algorithm to fashion design[J]. Engineering Applications of Artificial Intelligence, 2000, 13(6): 635-644.
[9] 宋莹, 丁乙烜. 男衬衫生产流水线模块化优化设计[J]. 服装学报, 2021, 6(1): 48-52.
SONG Ying, DING Yixuan. Modular simulation optimization design of man's shirt production line[J]. Journal of Clothing Research, 2021, 6(1): 48-52.
[10] 刘立枝, 闫亦农, 雒彬钰, 等. 模块化裤装缝制流水线的优化设计[J]. 毛纺科技, 2020, 48(1): 66-69.
LIU Lizhi, YAN Yinong, LUO Binyu, et al. Research on modular trousers sewing production line based on rule division[J]. Wool Textile Journal, 2020, 48(1): 66-69.
[11] 颜伟雄, 胡觉亮, 韩曙光. 资源约束的模块化服装生产工序编排优化模型与算法[J/OL]. 计算机集成制造系统,1-18[2024-07-01]. http://kns.cnki.net/kcms/detail/11.5946.TP.20220427.1412.008.html.
YAN Weixiong, HU Jueliang, HAN Shuguang. Optimization model andalgorithm of modular garment production process scheduling with resource con-straints[J/OL]. Computer Integrated Manufacturing Systems, 1-18[2024-07-01]. http://kns.cnki.net/kcms/detail/11.5946.TP.20220427.1412.008.html.
[12] 闫亦农. 蒙古族定制服装模块化缝制流水线的编制[J]. 毛纺科技, 2021, 49(5): 80-85.
YAN Yinong. Arrangement of modular sewing production line of Mongolian custom clothing[J]. Wool Textile Journal, 2021, 49(5): 80-85.
[13] 杨怡洁, 陈敏之. 基于多层次划分的服装产品族构造方法[J]. 浙江纺织服装职业技术学院学报, 2021, 20(4): 18-24.
YANG Yijie, CHEN Minzhi. Clothing product family construction method based on multi-level division[J]. Journal of Zhejiang Fashion Institute of Technology, 2021, 20(4): 18-24.
[14] 杨建峰, 肖和业, 李亮, 等. 基于模糊聚类和专家评分机制的无人机多层次模块划分方法[J]. 系统工程与电子技术, 2022, 44(8): 2530-2539.
doi: 10.12305/j.issn.1001-506X.2022.08.18
YANG Jianfeng, XIAO Heye, LI Liang, et al. Multi-level module partition method of UAV based on fuzzy clustering and expert scoring mechanism[J]. Systems Engineering and Electronics, 2022, 44(8): 2530-2539.
doi: 10.12305/j.issn.1001-506X.2022.08.18
[15] LI Z K, WEI W Y. Modular design for optimum granularity with auto-generated DSM and improved elbow assessment method[J]. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 2021, 236(4): 413-426.
[16] 孙才志, 王敬东, 潘俊. 模糊聚类分析最佳聚类数的确定方法研究[J]. 模糊系统与数学, 2001(1): 89-92.
SUN Caizhi, WANG Jingdong, PAN Jun. Research on the method of determining the optimal class number of fuzzy cluster[J]. Fuzzy Systems and Mathematics, 2001(1): 89-92.
[17] MIN M. Study of combined fuzzy clustering algorithm based on F-statistics hierarchy clustering[J]. Applied Mechanics and Materials, 2010, 29-32: 802-808.
[18] 吴成茂, 范九伦. 模糊F统计量及其应用[J]. 西安邮电学院学报, 2003(3): 56-61.
WU Chengmao, FAN Jiulun. Fuzzy F statistic and its application[J]. Journal of Xi'an University of Post and Telecommunications, 2003(3): 56-61.
[19] 贾晔, 李军, 丁艳. 基于模糊聚类算法的定制厨柜零件分类制造技术[J]. 林业工程学报, 2016, 1(3): 133-138.
JIA Ye, LI Jun, DING Yan. Customized cabinet part classification manufacturing technology based on fuzzy clustering algorithm[J]. Journal of Forestry Engineering, 2016, 1(3): 133-138.
[1] 王雅倩, 万爱兰, 曾登. 棉/形状记忆氨纶纬编免烫衬衫面料制备及其性能评价[J]. 纺织学报, 2023, 44(05): 125-131.
[2] 路丽莎, 蒋高明. 全成形针织服装三维款式向二维样板转化方法[J]. 纺织学报, 2022, 43(10): 133-140.
[3] 杨晓波. 基于交互式遗传算法的三维服装款式研究[J]. 纺织学报, 2022, 43(06): 145-150.
[4] 郑路, 颜伟雄, 胡觉亮, 韩曙光. 基于模块化的服装混合流水线平衡优化[J]. 纺织学报, 2022, 43(04): 140-146.
[5] 韩曙光, 颜伟雄, 胡觉亮. 模块化生产模式下的服装产品组合优化决策[J]. 纺织学报, 2021, 42(11): 151-158.
[6] 江慧, 马彪. 基于服装风格的款式相似度算法[J]. 纺织学报, 2021, 42(11): 129-136.
[7] 庹武, 王哓玉, 高雅昆, 于媛媛, 郝潇潇, 刘永亮, 郭鑫. 基于改进边缘检测算法的服装款式识别[J]. 纺织学报, 2021, 42(10): 157-162.
[8] 李倩文, 王建萍, 杨雅岚, 张冰洁, 李知霖. 基于数量化理论I的男西装款式要素感性评价[J]. 纺织学报, 2021, 42(05): 155-161.
[9] 张卓, 丛洪莲, 蒋高明, 董智佳. 基于交互式遗传算法的Polo衫快速款式推荐系统[J]. 纺织学报, 2021, 42(01): 138-144.
[10] 郑畑子, 王建萍. 服装印花图案设计的感性研究[J]. 纺织学报, 2020, 41(08): 101-107.
[11] 李涛, 杜磊, 黄振华, 蒋玉萍, 邹奉元. 服装款式图识别与样板转换技术研究进展[J]. 纺织学报, 2020, 41(08): 145-151.
[12] 夏明, 宋婧, 姜朝阳, 马延彬. 基于连衣裙结构特征匹配的款式识别技术[J]. 纺织学报, 2020, 41(07): 141-146.
[13] 刘咏梅, 韩天琪, 张向辉, 吕芳澜. 无省旗袍的结构设计方法[J]. 纺织学报, 2020, 41(06): 99-104.
[14] 苏旭中, 魏艳红, 刘新金, 谢春萍. 纺纱方式对织物抗皱性能及拉伸弹性的影响[J]. 纺织学报, 2020, 41(04): 33-38.
[15] 郑晶晶, 赵清瑶, 阎玉秀. 跑步运动中运动文胸对乳房振幅的影响[J]. 纺织学报, 2020, 41(03): 130-135.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!