纺织学报 ›› 2025, Vol. 46 ›› Issue (01): 9-15.doi: 10.13475/j.fzxb.20231200601

• 纤维材料 • 上一篇    下一篇

MXene-氧化石墨烯改性碳纤维/聚乳酸复合材料制备及其力学性能

左红梅, 高敏, 阮芳涛, 邹梨花, 徐珍珍()   

  1. 安徽工程大学 纺织服装学院, 安徽 芜湖 241000
  • 收稿日期:2023-12-05 修回日期:2024-07-06 出版日期:2025-01-15 发布日期:2025-01-15
  • 通讯作者: 徐珍珍(1976—),女,教授,博士。主要研究方向为淀粉改性浆料及纤维的功能化改性。E-mail:xuzhenzhen@ahpu.edu.cn
  • 作者简介:左红梅(1988—),女,讲师,博士。主要研究方向为纤维改性和纺织复合材料力学。
  • 基金资助:
    安徽省教育厅高校科学研究项目(2023AH050910);安徽省教育厅高校科学研究项目(2024AH050105);安徽省高校协同创新工程项目(GXXT-2023096)

Preparation and mechanical properties of MXene-graphene oxide modified carbon fiber/polylactic acid composites

ZUO Hongmei, GAO Min, RUAN Fangtao, ZOU Lihua, XU Zhenzhen()   

  1. School of Textile and Garment, Anhui University of Technology, Wuhu, Anhui 241000, China
  • Received:2023-12-05 Revised:2024-07-06 Published:2025-01-15 Online:2025-01-15

摘要: 为提高聚乳酸(PLA)的力学性能,以碳纤维(CF)为增强体,研究了CF、聚乙烯亚胺(PEI)和MXene-氧化石墨烯(MXene-GO)改性CF对PLA力学性能的影响。首先,通过PEI在CF表面引入活性胺基基团,得到PEI-CF;其次,通过MXene-GO改性CF-PEI;最后,通过双螺杆挤出机和注射成型方法制备了不同CF/PLA复合材料,探究了PEI和不同MXene-GO质量分数改性CF对CF/PLA复合材料力学性能的影响。结果表明:PEI和MXene-GO改性后CF/PLA复合材料的弹性模量得到了改善;由于纤维的长度小于临界增强长度,PEI和MXene-GO改性对CF/PLA复合材料的拉伸强度影响较小;此外,随着MXene-GO的添加及其质量分数的增加,CF-PEI/PLA复合材料拉伸断裂面越来越不平整,PEI-MXene-GO改性后的CF/PLA复合材料断裂面出现断裂碎片。

关键词: 碳纤维, 氧化石墨烯, 过渡金属碳/氮化物, 纤维表面改性, 纤维增强复合材料, 聚乳酸

Abstract:

Objective Polylactic acid (PLA) is a renewable biodegradable material while with limited mechanical properties, which can be improved by adding reinforced fibers. In this research, short carbon fiber (CF) was firstly modified with polyethylenimide (PEI) to prepare CF-PEI, and then modified with graphene oxide (GO) and MXene (MG) solution to prepare CF-PEI-MG. Finally, by using twin-screw extruder and injection molding methods, CF-PEI-MG reinforced PLA (CF-PEI-MG/PLA) composites were prepared and their tensile properties and failure modes were studied. The study provides a reference for the preparation of CF/PLA composites with high mechanical properties.

Method MXene was prepared by hydrofluoric acid etching method to further prepare MG solution, where the weight percentage of MG solution was 0.05%, 0.1% and 0.2%, respectively. CF-PEI-MG/PLA composites were prepared by the combination of twin-screw extruder and injection molding. The surface morphology of the modified fiber and the fracture cross section of the composite were characterized by scanning electron microscopy (SEM). The universal mechanical testing machine was applied to analyze tensile strength and elastic modulus of the modified composites. The influences of MG concentration on stress-strain curves, mechanical properties and failure modes of CF-PEI-MG/PLA composites were investigated.

Results After the modification of CF-PEI by MG, the uneven structure of the fiber surface was covered. In addition, the surface modification showed uniformity for CF-PEI-0.1MG(MG concentration is 0.1%). At the initial loading stage, the stress-strain curve of pure CF/PLA composites rose slowly and demonstrated the smallest slope, while that of CF-PEI/PLA and CF-PEI-MG/PLA composites rose more rapidly, with CF-PEI-0.1MG/PLA composite having the fastest rise and the largest slope. This meant that the interfacial modification of CF had a significant effect on the fracture strain of PLA. In addition, the strength of CF-PEI-0.1MG/PLA composite was the highest. This was because PEI, as a flexible chain segment, could improve the rigidity feature of binding with the matrix and reduce the stress concentration at the interface. In addition, MXene and GO also showed good compatibility with PEI by virtue of strong hydrogen bonds and electrostatic interactions. It was found that the elastic modulus of CF-PEI-0.1MG/PLA was 176.75% higher than that of CF/PLA, indicating that the addition of PEI and MXene-GO nanoparticles modified short CF had a significant effect on the stiffness of the composite. This was also because PEI, as a flexible chain segment, could improve the bonding between CF and MXene and GO. At the same time, the stiffness of CF/PLA composite was also improved by virtue of the high mechanical properties of MXene and GO. The third reason was that the uneven structure formed by MXene and GO on the fiber surface increased the anchoring effect with PLA matrix and further increased the mechanical interlocking of CF/PLA. In short, flexible PEI and rigid MXene-GO constructed a gradient interface layer, which effectively improved the tensile elastic modulus of modified CF/PLA. However, because the length of the fiber had been cut for several times, it could not play a good role in strengthening strength. Finally, the fracture surface of the modified CF/PLA composite was flat and white, showing a typical stress whitening phenomenon.

Conclusion CF-PEI-MG/PLA composites were successfully prepared by twin-screw extruder and injection molding methods. The modified CF could be evenly dispersed into PLA. However, in the process of preparing relevant composites, the length of the fiber was smaller than the critical reinforcement length, and the purpose of effectively improving the strength could not be achieved. The elastic modulus of PEI and MXene-modified CF/PLA composites had been significantly improved, among which CF-PEI-0.1MG/PLA composite had the best mechanical properties, and the elastic modulus was 176.75% higher than that of CF/PLA composite. In addition, the fractured surface of the related composites was flat, showing white stress phenomenon. Meanwhile, PLA fracture fragments could be found on the MXene-GO modified CF/PLA composite fracture surface. The study provides a reference for improving the mechanical properties of thermoplastic resin.

Key words: carbon fiber, graphene oxide, transition metal carbide/nitride, fiber surface modification, fiber reinforced composite, polylactic acid

中图分类号: 

  • TB332

图1

MXene的丁达尔效应"

图2

CF表面改性流程图"

图3

CF/PLA拉伸试样"

图4

CF的表面形貌"

图5

CF/PLA复合材料的拉伸应力-应变曲线"

表1

CF/PLA复合材料的拉伸强度和弹性模量"

试样种类 拉伸强度/MPa 弹性模量/GPa
CF/PLA 65.28 4.13
CF-PEI/PLA 63.98 9.49
CF-PEI-0.05MG/PLA 64.80 10.13
CF-PEI-0.1MG/PLA 69.06 11.43
CF-PEI-0.2MG/PLA 64.84 9.50

图6

CF/PLA复合材料宏观拉伸断裂失效图"

图7

CF/PLA复合材料拉伸断裂失效SEM照片"

[1] 曹建凡, 白树林, 秦文贞, 等. 碳纤维增强热塑性复合材料的制备与性能研究进展[J]. 复合材料学报, 2023, 40(3): 1229-1247.
CAO Jianfan, BAI Shulin, QIN Wenzhen, et al. Research progress on preparation and properties of carbon fiber reinforced thermoplastic composites[J]. Acta Materiae Compositae Sinica, 2023, 40(3): 1229-1247.
[2] ALBUJA-SANCHEZ J, DAMIAN-CHALAN A, ESCOBAR D. Experimental studies and application of fiber-reinforced polymers (FRPs) in civil infrastructure systems: a state-of-the-art review[J]. Polymers (Basel), 2024. DOI:10.3390/polym16020250.
[3] SAHU S, KAUR A, KHATRI M, et al. A review on cutinases enzyme in degradation of microplastics[J]. Journal of Environmental Management, 2023. DOI:10.1016/j.jenvman.2023.119193.
[4] 刘彦麟, 顾伟文, 魏建斐, 等. 耐热聚乳酸材料的研究进展[J]. 纺织学报, 2022, 43(6): 180-186.
LIU Yanlin, GU Weiwen, WEI Jianfei, et al. Research progress and status quo of heat-resistant polylactic acid materials[J]. Journal of Textile Research, 2022, 43(6): 180-186.
[5] NADONDU B, SURIN P, DEEYING J. Mechanical property evaluation of glass-carbon-durian skin fiber reinforced polylactic acid composites[J]. Journal of Wuhan University of Technology, 2023, 38(1): 244-247.
[6] 徐铭涛, 嵇宇, 仲越, 等. 碳纤维/环氧树脂基复合材料增韧改性研究进展[J]. 纺织学报, 2022, 43(9): 203-210.
XU Mingtao, JI Yu, ZHONG Yue, et al. Review on toughening modification of carbon fiber/epoxy resin composites[J]. Journal of Textile Research, 2022, 43(9): 203-210.
[7] LI N, CHENG S, WANG B, et al. Chemical grafting of graphene onto carbon fiber to produce composites with improved interfacial properties via sizing process: a step closer to industrial production[J]. Composites Science and Technology, 2023. DOI:10.1016/j.compscitech.2022.109822.
[8] KIM S Y, CHOI E J, LEE S J, et al. Roles of modified polyethylene addition and electron beam treatment on the interfacial, thermal, mechanical, and electrical properties of polyethylene/short carbon fiber composites[J]. Composites Part A: Applied Science and Manufacturing, 2023. DOI:10.1016/j.compositesa.2022.107350.
[9] XU N, LI Y, ZHENG T, et al. A mussel-inspired strategy for CNT/carbon fiber reinforced epoxy composite by hierarchical surface modification[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022. DOI:10.1016/j.colsurfa.2021.128085.
[10] ZUO H M, LI D S, HUI D, et al. The multiscale enhancement of mechanical properties of 3D MWK composites via poly(oxypropylene) diamines and GO nanoparticles[J]. Nanotechnology Reviews, 2019, 8(1): 587-599.
[11] KWON Y J, KIM Y, JEON H, et al. Graphene/carbon nanotube hybrid as a multi-functional interfacial reinforcement for carbon fiber-reinforced composites[J]. Composites Part B: Engineering, 2017, 122: 23-30.
[12] ZHAO X, QI S, LIU J, et al. Preparation and mechanical performances of carbon fiber reinforced epoxy composites by MXene nanosheets coating[J]. Journal of Materials Science: Materials in Electronics, 2019, 30(11): 10516-10523.
[13] HALIM J, KOTA S, LUKATSKAYA M R, et al. Synthesis and characterization of 2D molybdenum carbide (MXene)[J]. Advanced Functional Materials, 2016, 26(18): 3118-3127.
[14] ADSTEDT K, BUXTON M L, HENDERSON L C, et al. 2D graphene oxide and MXene nanosheets at carbon fiber surfaces[J]. Carbon, 2023, 203: 161-171.
[15] XU Z, DOU T, WANG Y, et al. Three-dimensional-printed carbon nanotube/polylactic acid composite for efficient electromagnetic interference shielding[J]. Polymers (Basel), 2023. DOI:10.3390/polym15143080.
[16] PÉREZ-FONSECA A A, HERRERA-CARMONA V S, GONZALEZ-GARCÍA Y, et al. Influence of the blending method over the thermal and mechanical properties of biodegradable polylactic acid/polyhydroxybutyrate blends and their wood bio-composites[J]. Polymers for Advanced Technologies, 2021, 32(9): 3483-3494.
[17] WANG S, LI D, MENG W, et al. Scalable, superelastic, and superhydrophobic MXene/silver nanowire/melamine hybrid sponges for high-performance electromagnetic interference shielding[J]. Journal of Materials Chemistry C, 2022, 10(13): 5336-5344.
[18] MAQSOOD N, RIMAŠAUSKAS M. Characterization of carbon fiber reinforced PLA composites manufactured by fused deposition modeling[J]. Composites Part C: Open Access, 2021. DOI:10.1016/j.jcomc.2021.100112.
[19] WANG X, LI S C, XIANG D W, et al. Flexural properties and failure mechanisms of short-carbon-fiber-reinforced polylactic acid composite modified with MXene and GO[J]. Materials, 2024. DOI:10.3390/ma17061389.
[20] WAN S, LI X, WANG Y, et al. Strong sequentially bridged MXene sheets[J]. Proceedings of the National Academy of Sciences, 2020, 117(44): 27154-27161.
[21] AHMED A, SINGH A, YOUNG S J, et al. Synthesis techniques and advances in sensing applications of reduced graphene oxide (rGO) composites: a review[J]. Composites Part A: Applied Science and Manufacturing, 2023. DOI:10.1016/j.compositesa.2022.107373.
[22] DUAN N, SHI Z, WANG J, et al. Multilayer Ti3C2Tx MXene/graphene oxide/carbon fiber fabric/thermoplastic polyurethane composite for improved mechanical and electromagnetic interference shielding performance[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2023. DOI:10.1016/j.colsurfa.2023.132339.
[23] PU Y, MA Z, LIU L, et al. Improvement on strength and toughness for CFRPs by construction of novel ″soft-rigid″ interface layer[J]. Composites Part B: Engineering, 2022. DOI:10.1016/j.compositesb.2022.109846.
[1] 赵珂, 张恒, 程文胜, 甄琪, 步青云, 崔景强. 类蒲叶结构聚乳酸熔喷非织造材料的制备及其性能[J]. 纺织学报, 2025, 46(02): 51-60.
[2] 朱雪, 钱鑫, 郝梦圆, 张永刚. MXene/碳纳米纤维膜的静电纺丝-电泳沉积复合工艺制备及其电磁屏蔽性能[J]. 纺织学报, 2025, 46(01): 1-8.
[3] 刘仁义, 杨琴, 孙宝忠, 顾伯洪, 张威. 织物增强复合材料的电热驱动形状记忆回复行为[J]. 纺织学报, 2025, 46(01): 72-79.
[4] 欧宗权, 于金超, 潘志娟. 光致变色聚乳酸/聚3-羟基丁酸酯共混纤维的纺制及其结构与性能[J]. 纺织学报, 2024, 45(12): 9-17.
[5] 刘霞, 吴改红, 闫子豪, 王彩柳. 智能相变调温聚乳酸纤维膜的制备及其性能[J]. 纺织学报, 2024, 45(12): 18-24.
[6] 余晓佩, 沈伟, 陈立峰, 竺铝涛. 玻璃纤维复合材料损伤裂纹修复及其性能评价[J]. 纺织学报, 2024, 45(11): 121-127.
[7] 刘延波, 高鑫羽, 郝铭, 胡晓东, 杨波. 基于光热改性的复合纤维毡及其在高黏度油吸附中的应用[J]. 纺织学报, 2024, 45(11): 55-64.
[8] 姜梦敏, 王一璠, 金欣, 王闻宇, 肖长发. 聚吡咯共轭结构对碳纤维增强树脂基复合材料热循环稳定性能的影响[J]. 纺织学报, 2024, 45(10): 23-30.
[9] 闫迪, 王雪芳, 谭文萍, 高国金, 明津法, 宁新. 富咪唑型多孔左旋聚乳酸纳米纤维膜制备及其双重净水性能[J]. 纺织学报, 2024, 45(08): 116-126.
[10] 李天宇, 沈伟, 陈立峰, 竺铝涛. 三维角联锁机织复合材料的制备及其弯曲压缩失效机制[J]. 纺织学报, 2024, 45(08): 183-189.
[11] 于承浩, 王元非, 于腾波, 吴桐. 热致自卷曲左旋聚乳酸/聚乳酸-羟基乙酸共聚物纳米纤维血管支架制备及其性能[J]. 纺织学报, 2024, 45(07): 18-23.
[12] 陈锟, 许晶莹, 郑怡倩, 李加林, 洪兴华. 丝网印刷还原氧化石墨烯改性蚕丝织物的导电与电热性能[J]. 纺织学报, 2024, 45(03): 122-128.
[13] 翟倩, 张恒, 赵珂, 朱文辉, 甄琪, 崔景强. 仿生竹节纤维基加湿材料的叠层设计及其导湿快干性能[J]. 纺织学报, 2024, 45(02): 1-10.
[14] 杨奇, 刘高慧, 黄琪帏, 胡睿, 丁彬, 俞建勇, 王先锋. 熔喷聚乳酸/聚偏氟乙烯电晕驻极空气过滤材料电荷存储与过滤性能相关性研究[J]. 纺织学报, 2024, 45(01): 12-22.
[15] 王镕琛, 张恒, 翟倩, 刘瑞焱, 黄鹏宇, 李霞, 甄琪, 崔景强. 聚乳酸超细纤维敷料的熔喷成形工艺及其快速导液特性[J]. 纺织学报, 2024, 45(01): 30-38.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!