纺织学报 ›› 2024, Vol. 45 ›› Issue (12): 109-117.doi: 10.13475/j.fzxb.20231200801

• 纺织工程 • 上一篇    下一篇

剪切变形对各向异性织物主渗透率及浸润特性的影响

王珏1, 晏石林1, 李永静1(), 何龙飞2, 谢翔宇1, 孟晓旭1   

  1. 1.武汉理工大学 新材料力学理论与应用湖北省重点实验室, 湖北 武汉 430070
    2.东北大学 环境科学研究科, 日本 仙台 980-8579
  • 收稿日期:2023-12-07 修回日期:2024-05-02 出版日期:2024-12-15 发布日期:2024-12-31
  • 通讯作者: 李永静(1986—),女,实验师,博士。主要研究方向为复合材料成形工艺及力学。E-mail:whutliyongjing@163.com
  • 作者简介:王珏(1998—),男,硕士生。主要研究方向为复合材料结构分析与设计。

Effect of shear deformation on principal permeability and infiltration characteristics of anisotropic fabrics

WANG Jue1, YAN Shilin1, LI Yongjing1(), HE Longfei2, XIE Xiangyu1, MENG Xiaoxu1   

  1. 1. Key Laboratory of Theory and Application of Advanced Materials Mechanics, Wuhan University of Technology, Wuhan, Hubei 430070, China
    2. College of Environment Studies, Tohoku University, Sendai 980-8579, Japan
  • Received:2023-12-07 Revised:2024-05-02 Published:2024-12-15 Online:2024-12-31

摘要:

树脂传递模塑成型工艺(RTM)中剪切变形会导致织物预成型体几何形式发生改变,为研究剪切变形对织物预成型体的体积分数、渗透率及填充浸润的影响,针对低黏度液体设计并建立了恒流条件下径向流动实验测量系统,考察了一般各向异性织物发生剪切变形后主渗透率、主渗透率方向、各向异性度及浸润特性的影响规律。结果表明:恒定流量下,随着剪切角的增加,主渗透率值逐渐减小,织物的渗透率各向异性度逐渐增加,主渗透率方向与x轴夹角逐渐减小;不同剪切角度对入口压力及填充浸润时间具有一定影响,剪切角越大,填充浸润时入口压力越大,织物完全浸润所需的时间越长;数值模拟可准确预测充模过程中的浸润特性。

关键词: 树脂传递模塑成型工艺, 剪切变形, 主渗透率, 浸润特性, 各向异性, 数值模拟, 玻璃纤维织物

Abstract:

Objective Based on the resin transfer molding process, Shear deformation will change the fabric structure, which directly reduced the fiber bundle spacing and porosity and affected the permeability and main permeability direction of the fabric. In order to ascertain the governing principles. the effect of shear deformation on the principal permeability component of anisotropic fiber fabrics, permeability anisotropy, principal permeability direction, inlet pressure, and the time required for filling and infiltration is investigated to lay the foun-dation for practical applications and verified with numerical simulations.

Method An experimental measurement system for the radial flow of a low-viscosity liquid (corn oil) under constant flow conditions was designed and set up using a plain glass woven fabric (fabric face density of 0.482 kg/m2 and glass fibric density of 2 500 kg/m3. The warp and weft yarn density was 1 105 tex,while the warp density was 30 pieces/(10 cm) and the weft density was 22 pieces/(10 cm)) with rectangular pores. The principal permeability component was obtained using the permeability formula for anisotropic fabrics and the inlet pressure change was recorded by the pressure transducer in the process of filling and infiltration.

Result As the shear angle was increased from 0° to 30°, the internal porosity of the fabric was decreased and the fiber volume fraction was increased. At shear angles between 10°-20°, the fiber volume fractions obtained from the theoretical equations were basically the same as the experimental values; while at the shear angle of 30°, the theoretically predicted fiber volume fraction was about 0.8% higher than the experimentally tested value. With the increase of the shear angle, the magnitude of the principal permeability K1 and K2 showed a significant decreasing trend, in which K1 decreased from 20.20 × 10-10 m2 to 11.44 × 10-10 m2 and K2 from 16.1 × 10-10 m2 to 6.31 × 10-10 m2, the degree of anisotropy of the fiber fabric increased by 1.6% and 12.0%, and the anisotropy of the fabric was increased by 1.6%, 12.0%, and 44.8%. The direction angle of the principal permeability was decreased by about 29°, 39°, and 46°. At shear angles of 0°, 10°, 20°, and 30°, the time required for the elliptical flow front to fill and infiltrate along the long axis is 39.0, 37.0, 36.0, and 32.0 s, respectively, and the time required for the fabric to be completely filled and infiltrated is 45.0, 48.0, 49.0, and 54.0 s, with the maximum values of the inlet pressures being 23.2, 30.0, 33.0, and 38.9 kPa, respectively. Comparing the different inlet pressure curves, the length of the long and short axes of the flow front, and the contour of the flow front obtained from the experimental and numerical simulations were in excellent agreement, and the time error of long axis full infiltration was 4.0%. the total wetting time error was 2.4%, the maximum inlet pressure error was 7.9%. The numerical simulation could accurately predict the change of inlet pressure during the filling and wetting process, and this method could be used to study the wetting characteristics of different fabrics after shear deformation.

Conclusion In radial flow experiments, an increased fiber volume fraction leads to a reduction in the principal permeability (K1, K2) of the fabric and alters both the anisotropy degree (K1/K2) and the orientation of the primary permeability. The fitting formula obtained from the experiments effectively predicts the direction of the principal permeability of the fabric after shear deformation, providing a solid foundation for subsequent investigations into changes in the directional principal permeability of the fabric. The augmentation of fiber volume fraction results in an elevation of inlet pressure and an increase in the time required for complete filling and infiltration of the fiber fabric during the liquid filling process, making the filling process more challenging. Numerical simulations offer a more economi-cally and conveniently prediction of the liquid filling and infiltration process in fiber fabrics. Subsequently, numerical simulations can serve as a basis for studying the wetting characteristics of different fiber fabrics.

Key words: resin transfer molding process (RTM), shear deformation, principal permeability, anisotropy of permeability, numerical simulation, glass fiber fabric

中图分类号: 

  • TB332

图1

平纹布及结构形式图"

图2

径向流动实验示意图"

图3

流动前沿及转化示意图"

表1

织物剪切变形后纤维体积分数实验值及理论值"

剪切角度α/(°) 纤维体积分数实验值 纤维体积分数理论值
0 0.430 0.430
10 0.438 0.437
20 0.460 0.458
30 0.492 0.496

图4

同一时刻下不同剪切角度的织物浸润快照"

表2

织物剪切变形后主渗透率K1、K2及K1/K2"

剪切角度
α/(°)
主渗透率
K1/m2
主渗透率
K2/m2
各向异性度
K1/K2
0 20.20×10-10 16.11×10-10 1.25
10 15.69×10-10 12.33×10-10 1.27
20 13.73×10-10 9.79×10-10 1.40
30 11.44×10-10 6.31×10-10 1.81

图5

不同剪切角度下主渗透率方向对比"

图6

剪切角为15°时的主渗透率方向"

图7

不同剪切角度下的入口压力曲线及长轴浸润时间"

图8

计算模型示意图"

图9

实验与数值模拟的入口压力曲线对比"

图10

不同时刻下长轴与短轴长度的实验与数值模拟对比"

图11

同一时刻下实验与数值模拟流动前沿对比"

[1] 赵安安, 杨文凯, 于飞, 等. 大型高性能复合材料构件RTM工艺进展[J]. 南京航空航天大学学报, 2020, 52(1): 39-47.
ZHAO An'an, YANG Wenkai, YU Fei, et al. RTM Process for large-scale and high-performance composite components[J]. Journal of Nanjing University of Aeronautics & Astronautics, 2020, 52(1): 39-47.
[2] MENDIKUTE J, BASKARAN M, ARETXABALETA L, et al. Effect of voids on the impact properties of non-crimp fabric carbon/epoxy laminates manufactured by liquid composite Moulding[J]. Composite Structures, 2022, 297.
[3] 张国利, 张策, 史晓平, 等. 复合材料树脂传递模塑注胶工艺调控方法与技术[J]. 纺织学报, 2019, 40(12): 178-184.
ZHANG Guoli, ZHANG Ce, SHI Xiaoping, et al. Control method and technology of resin injection for resin transfer molding in manufacturing of composite mate-rials[J]. Journal of Textile Research, 2019, 40(12): 178-184.
[4] SHEN H, WANG P, LEGRAND X. In-plane shear characteristics during the forming of tufted carbon woven fabrics[J]. Composites Part A: Applied Science and Manufacturing, 2021.DOI:10.1016/j.compositesa.2020.106196.
[5] BARBURSKI M, STRAUMIT I, ZHANG X, et al. Micro-CT analysis of internal structure of sheared textile composite reinforcement[J]. Composites Part A: Applied Science and Manufacturing, 2015, 73: 45-54.
[6] PIERCE R S, FALZON B G, THOMPSON M C. Permeability characterization of sheared carbon fiber textile preform[J]. Polymer Composites, 2018, 39(7): 2287-2298.
[7] WU C H, JAMES W T, JAMES L L. Trans-plane fluid permeability measurement and its applications in liquid composite molding[J]. Polymer Composites, 1994, 15(4): 289-298.
[8] OKONKWO K, SIMACEK P, ADVANI S G, et al. Characterization of 3D fiber preform permeability tensor in radial flow using an inverse algorithm based on sensors and simulation[J]. Composites Part A: Applied Science and Manufacturing, 2011, 42(10): 1283-1292.
[9] CHAN A W, HWANG S T. Anisotropic in-plane permeability of fabric media[J]. Polymer Engineering & Science, 1991, 31(16): 1233-1239.
[10] 杨文权, 蒋金华, 陈南梁. 玻璃纤维织物在剪切变形作用下的渗透率[J]. 纺织学报, 2018, 39(8): 58-70.
YANG Wenquan, JIANG Jinhua, CHEN Nanliang. Permeability of glass fiber fabrics under shear deformation[J]. Journal of Textile Research, 2018, 39(8): 58-70.
[11] ADAMS K L, RUSSEL W B, REBENFELD L. Radial penetration of a viscous liquid into a planar anisotropic porous medium[J]. International Journal of Multiphase Flow, 1988, 14(2): 203-215.
[12] CARTER E J, FELL A W, SUMMERSCALES J. A simplified model to calculate the permeability tensor of an anisotropic fibre bed[J]. Composites Manufacturing, 1995, 6(3/4): 228-235.
[13] ENDRUWEIT A, ERMANNI P. The in-plane permeability of sheared textiles. Experimental observations and a predictive conversion model[J]. Composites Part A: Applied Science and Manufacturing, 2004, 35(4): 439-451.
[14] WONG C C, LONG A C, SHERBURN M, et al. Comparisons of novel and efficient approaches for permeability prediction based on the fabric architec-ture[J]. Composites Part A: Applied Science and Manufacturing, 2006, 37(6): 847-857.
[15] 陆航. 双尺度孔隙纤维织物渗透率的模拟预测[D]. 武汉: 武汉理工大学, 2010: 22-42.
LU Hang. Simulation and prediction of permeability for dual-scale porous fiber fabrics[D]. Wuhan: Wuhan University of Technology, 2010: 22-42.
[16] 李永静. LCM成型工艺非饱和流动机理的数值模拟研究[D]. 武汉: 武汉理工大学,2016: 55-72.
LI Yongjing. Numerical Simulation of Unsaturated Flow Mechanism[D]. Wuhan: Wuhan University of Technology, 2016: 55-72.
[17] ARANDA S, BERG D C, DICKERT M, et al. Influence of shear on the permeability tensor and compaction behaviour of a non-crimp fabric[J]. Composites Part B: Engineering, 2014, 65: 158-163.
[18] GRUJICIC M, CHITTAJALLU K M, WALSH S. Effect of shear, compaction and nesting on permeability of the orthogonal plain-weave fabric preforms[J]. Materials Chemistry and Physics, 2004, 86(2/3): 358-369.
[19] LOIX F, BADEL P, ORGEAS L, et al. Woven fabric permeability: From textile deformation to fluid flow mesoscale simulations[J]. Composites Science and Technology, 2008, 68(7/8): 1624-1630.
[20] BADEL P, VIDAL-SALLE E, MAIRE E, et al. Simulation and tomography analysis of textile composite reinforce-ment deformation at the mesoscopic scale[J]. Compo-sites Science and Technology, 2008, 68(12): 2433-2440.
[21] WALTHER J, SIMACEK P, ADVANI S G. The effect of fabric and fiber tow shear on dual scale flow and fiber bundle saturation during liquid molding of textile composites[J]. International Journal of Material Forming, 2012, 5: 83-97.
[22] BINETRUY C, HILAIRE B, PABIOT J. Tow impregnation model and void formation mechanisms during RTM[J]. Journal of Composite Materials, 1998, 32(3): 223-245.
[23] TAN H, PILLAI K M. Fast liquid composite molding simulation of unsaturated flow in dual-scale fiber mats using the imbibition characteristics of a fabric-based unit cell[J]. Polymer Composites, 2010, 31(10): 1790-1807.
[24] 李永静, 晏石林, 严飞, 等. 注射条件对LCM工艺非饱和流动特性影响[J]. 复合材料学报, 2016, 33(11): 2688-2697.
LI Yongjing, YAN Shilin, YAN Fei, et al. Influence of injection conditions on unsaturated flow characteristics of LCM processes[J]. Acta Materiae Compositae Sinica, 2016, 33(11): 2688-2697.
[25] 谢翔宇, 李永静, 晏石林. 流体模塑成型工艺二维径向非饱和流动数值模拟[J]. 复合材料学报, 2018, 35(12): 3386-3392.
XIE Xiangyu, LI Yongjing, YAN Shilin. Numerical simulation of 2-dimensional radial unsaturated flow in liquid composite molding processes[J]. Acta Materiae Compositae Sinica, 2018, 35(12): 3386-3392.
[26] 何龙飞, 晏石林, 李永静, 等. 双尺度纤维织物二维非饱和流动的数值模拟与实验[J]. 复合材料学报, 2020, 37(4): 869-876.
HE Longfei, YAN Shilin, LI Yongjing, et al. Numerical simulation and experiment of 2D unsaturated flow of dual-scale fiber mat[J]. Acta Materiae Compositae Sinica, 2020, 37(4): 869-876.
[27] 刘文超, 晏石林, 李永静, 等. 树脂传递模塑成型工艺中嵌套效应引起渗透率变异的实验与数值模拟[J]. 复合材料学报, 2021, 38(11): 3620-3628.
LIU Wenchao, YAN Shilin, LI Yongjing, et al. Experimental and numerical simulation of permeability variation induced by nesting effect in resin transfer molding[J]. Acta Materiae Compositae Sinica, 2021, 38(11): 3620-3628.
[28] CALADO V M A, ADVANI S G. Effective average permeability of multi-layer preforms in resin transfer molding[J]. Composites Science and Technology, 1996, 56(5): 519-531.
[1] 奚传智, 王家源, 王泳智, 陈革, 裴泽光. 低能耗喷气涡流纺喷嘴气流场数值模拟与纺纱实验[J]. 纺织学报, 2024, 45(12): 206-214.
[2] 张定眺, 王倩茹, 邱芳, 李凤艳. 转杯纺分梳排杂区气流场的多维数值模拟对比[J]. 纺织学报, 2024, 45(10): 64-71.
[3] 张琦, 左露娇, 屠佳妮, 聂美婷. 经编贾卡鞋面材料透气性的数值模拟[J]. 纺织学报, 2024, 45(09): 78-83.
[4] 田少萌, 张丽, 石浩轩, 徐阳. 基于ANSYS Workbench的高密机织滤料动态形变模拟与分析[J]. 纺织学报, 2024, 45(09): 63-69.
[5] 岳旭, 王蕾, 孙丰鑫, 潘如如, 高卫东. 基于ABAQUS的平纹织物同面对向弯曲有限元模拟[J]. 纺织学报, 2024, 45(08): 165-172.
[6] 刘倩倩, 尤健明, 王琰, 孙成磊, 祝国成. 纤维弯曲对其集合体过滤特性影响的稳态数值分析[J]. 纺织学报, 2024, 45(07): 31-39.
[7] 谢红, 张林蔚, 沈云萍. 基于人体臂部的连续动态服装压力预测模型及准确性表征方法[J]. 纺织学报, 2024, 45(07): 150-158.
[8] 韩烨, 田苗, 蒋青昀, 苏云, 李俊. 织物-空气层-皮肤三维结构建模及其传热模拟[J]. 纺织学报, 2024, 45(02): 198-205.
[9] 王青, 梁高翔, 殷俊清, 盛晓超, 吕绪山, 党帅. 新型气流牵伸通道结构模型的构建与性能分析[J]. 纺织学报, 2023, 44(11): 52-60.
[10] 杨孟想, 刘让同, 李亮, 刘淑萍, 李淑静. 机织物的热传递与强热条件下热防护性能[J]. 纺织学报, 2023, 44(11): 74-82.
[11] 高艺华, 钱付平, 王晓维, 汪虎明, 高杰, 陆彪, 韩云龙. 纺织车间定向均流送风口结构设计及其送风性能[J]. 纺织学报, 2023, 44(08): 189-196.
[12] 连力平, 杨鹏程, 余子健, 龙阳昭, 肖渊. 织物表面激光打标工艺参数的数值模拟及选取方法[J]. 纺织学报, 2023, 44(06): 121-128.
[13] 樊百林, 张昌睿, 郭佳华, 黄钢汉, 尉国梁. 基于Flow Simulation的喷气织机辅助喷嘴喷孔结构优化[J]. 纺织学报, 2023, 44(06): 200-206.
[14] 缪莹, 熊诗嫚, 郑敏博, 唐建东, 张慧霞, 丁彩玲, 夏治刚. 高光洁处理对聚酰亚胺短纤纱及其织物性能的影响[J]. 纺织学报, 2023, 44(02): 118-127.
[15] 牛丽, 刘青, 陈超余, 蒋高明, 马丕波. 仿生鳞片针织结构自供能传感织物的制备及其性能[J]. 纺织学报, 2023, 44(02): 135-142.
Viewed
Full text
27
HTML PDF
Just accepted Online first Issue Just accepted Online first Issue
0 0 6 0 0 21

  From Others local
  Times 7 20
  Rate 26% 74%

Abstract
Just accepted Online first Issue
0 0 81

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!