纺织学报 ›› 2024, Vol. 45 ›› Issue (10): 145-151.doi: 10.13475/j.fzxb.20231201601

• 染整工程 • 上一篇    下一篇

衣康酸聚乙二醇单醚酯封端水性聚氨酯织物涂层剂的制备及其性能

王理杰1,2, 杨建军1,2(), 吴庆云1,2, 吴明元1,2, 张建安1,2, 刘久逸1,2   

  1. 1.安徽大学 化学化工学院, 安徽 合肥 230601
    2.安徽省水基高分子材料高性能化工程实验室, 安徽 合肥 230601
  • 收稿日期:2023-12-11 修回日期:2024-06-19 出版日期:2024-10-15 发布日期:2024-10-22
  • 通讯作者: 杨建军(1960—),男,教授,硕士。主要研究方向为水基高分子材料。E-mail:andayjj@163.com
  • 作者简介:王理杰(1999—),男,硕士生。主要研究方向为水基高分子材料。
  • 基金资助:
    国家自然科学基金项目(51973001);安徽省科技计划重点项目(1704a0902018)

Preparation and properties of itaconic acid polyethylene glycol monoether ester end-capped waterborne polyurethane fabric coating agent

WANG Lijie1,2, YANG Jianjun1,2(), WU Qingyun1,2, WU Mingyuan1,2, ZHANG Jian'an1,2, LIU Jiuyi1,2   

  1. 1. School of Chemistry and Chemical Engineering, Anhui University, Hefei, Anhui 230601, China
    2. Key Laboratory of Environment-Friendly Polymer Materials of Anhui Province, Hefei, Anhui 230601, China
  • Received:2023-12-11 Revised:2024-06-19 Published:2024-10-15 Online:2024-10-22

摘要:

为丰富水性聚氨酯亲水单体的来源与种类,从而提高涂层织物水蒸气透过率,以聚乙二醇单醚(MPEG)和衣康酸(IA)为原料,通过酯化反应合成含碳碳双键的衣康酸聚乙二醇单醚酯(IM)。将IM和甲基丙烯酸羟乙酯型水性聚氨酯(HWPU)混合,经紫外线接枝得到IM封端水性聚氨酯织物涂层剂(WPU-IM),采用直接涂覆法将其涂布于涤纶织物。通过吸水率、拉伸、耐静水压和水蒸气透过率测试对WPU-IM涂膜、织物涂层的性能进行分析。结果表明:当IM质量分数为2.1%时,WPU-IM涂膜断裂强度为8.61 MPa,断裂伸长率为325%,吸水率为17.4%,水接触角为79.2°;WPU-IM涂层织物耐静水压值为18.86 kPa,透湿率为4 086.3 g/(m2·d),综合性能达到最佳。

关键词: 涂层剂, 亲水单体, 聚乙二醇单醚, 衣康酸, 水性聚氨酯, 紫外接枝, 织物涂层

Abstract:

Objective As a high-end fabric coating agent, water-based polyurethane holds vast development potential. In-depth research along this line will not only help improve the quality and performance of domestic coating products but also promote technological progress and innovative development in the textile coating industry. Compared to traditional solvent-based polyurethanes, water-based polyurethanes are more environmentally friendly, with lower VOC emissions, aligning with current green and sustainable trends. Additionally, the water-based polyurethanes can add more functionalities and value to textiles, enhancing the market competitiveness of products.

Method Using polyethylene glycol monomethyl ether (MPEG) and itaconic acid (IA) as the raw materials, itaconic acid polyethylene glycol monomethyl ether ester (IM) containing C=C double bonds was synthesized via esterification reaction, and IM was characterized using infrared spectroscopy and nuclear magnetic resonance spectroscopy. After mixing IM with hydroxyethyl methacrylate-terminated water-based polyurethane (HWPU), a water-based polyurethane fabric coating agent terminated with itaconic acid polyethylene glycol monomethyl ether ester (WPU-IM) through UV grafting was obtained. The properties of the WPU-IM film and fabric coating were analyzed using infrared spectroscopy, water absorption tests, tensile tests, hydrostatic pressure resistance tests, and water vapor transmission rate tests.

Results With the increase in the mass fraction of WPU-IM, the water absorption rate of the film rose from 6.8% to 17.9%, and the water contact angle was decreased from 90.4° to 78.1°, indicating an enhanced hydrophilicity of the film. Meanwhile, the water vapor permeability of the coated fabric rose on the increase in WPU-IM content, demonstrating that the introduction of polyethylene glycol segments can improve the moisture permeability of the waterborne polyurethane fabric coating agent. When the mass fraction of IM is 2.1%, the water vapor permeability of the fabric coating reached 4 086.3 g/(m2·d), consistent with the moisture permeability mechanism of hydrophilic non-porous membranes. When increasing the mass fraction of WPU-IM, the elongation at break of the film was gradually increased, reaching 325% when the mass fraction of IM is 2.1%, which indicated improved ductility of the film. However, the tensile strength of the film and the hydrostatic pressure resistance of the coated fabric demonstrated a decrease with the increase in the mass fraction of WPU-IM, with the tensile strength dropping from 12.63 MPa to 5.49 MPa and the hydrostatic pressure resistance decreasing from 27.12 kPa to 17.31 kPa.

Conclusion The synthesized WPU-IM, using IM as a biomass raw material and by introducing polyethylene glycol hydrophilic chain segments into the polyurethane chain through free radical polymerization, can effectively improve the moisture permeability of water-based polyurethane fabric coating agents and enhance the ductility of the coating film. However, it is also found that excessive introduction of WPU-IM is not conducive to the water resistance and mechanical strength of the fabric coating.

Key words: coating agent, hydrophilic monomer, methoxypolyethylene glycol, itaconic acid, waterborne polyurethane, ultraviolet grafting, fabric coating

中图分类号: 

  • TS195.2

图1

亲水单体 IM 的合成"

图2

HWPU乳液的制备"

图3

WPU-IM涂层织物制备"

图4

衣康酸、聚乙二醇单甲醚及单体IM的红外光谱图"

图5

IM 的1H-NMR 谱图"

图6

HWPU与WPU-IM的红外光谱图"

表1

IM的质量分数对涂膜吸水性能的影响"

IM质量分数/% 涂膜吸水率/% 涂膜水接触角/(°)
0 6.8 90.4
0.7 14.1 81.7
1.4 16.6 80.1
2.1 17.4 79.2
2.8 17.9 78.1

图7

IM质量分数对WPU-IM涂膜力学性能的影响"

图8

涂覆前后织物的SEM照片"

图9

IM质量分数对织物透湿率和静水压的影响"

[1] HONARKAR H. Waterborne polyurethanes: a review[J]. Journal of Dispersion Science and Technology, 2018, 39(4): 507-516.
[2] DAS D, CHAUDHURI A, MITRA M, et al. Development of moisture vapour permeable waterproof cotton fabric by coating with blend of natural rubber latex and polyvinyl alcohol[J]. The Journal of The Textile Institute, 2017, 108(8): 1285-1290.
[3] AHMADI Y, AHMAD S. Recent progress in the synthesis and property enhancement of waterborne polyurethane nanocomposites: promising and versatile macromolecules for advanced applications[J]. Polymer Reviews, 2020, 60(2): 226-266.
[4] BRADLEY D. Don't sweat the waterproof breathables market[J]. Materials Today, 2017, 20(5): 225-6.
[5] 戴艳阳, 王诗潭, 王云仪, 等. 基于运动生物力学的防护服装活动性能研究进展[J]. 纺织学报, 2022, 43(11): 212-218.
doi: 10.13475/j.fzxb.20210607707
DAI Yanyang, WANG Shitan, WANG Yunyi, et al. Research progress in mobility performance of protective clothing based on sports biomechanics[J]. Journal of Textile Research, 2022, 43(11): 212-218.
doi: 10.13475/j.fzxb.20210607707
[6] 栗辰飞, 刘元军, 赵晓明. 生化防护服的研究进展[J]. 纺织学报, 2022, 43(7): 207-216.
LI Chenfei, LIU Yuanjun, ZHAO Xiaoming. Research progress of biochemical protective clothing[J]. Journal of Textile Research, 2022, 43(7): 207-216.
[7] BRAMHECHA I, SHEIKH J. Development of sustainable citric acid-based polyol to synthesize waterborne polyurethane for antibacterial and breathable waterproof coating of cotton fabric[J]. Industrial & Engineering Chemistry Research, 2019, 58(47): 21252-21261.
[8] XU H, QIU F, WANG Y, et al. UV-curable waterborne polyurethane-acrylate: preparation, characterization and properties[J]. Progress in Organic Coatings, 2012, 73(1): 47-53.
[9] KERKETTA A, MEENA M, DWIVEDI S, et al. Tuning the properties of breathable polyurethanes through chemical crosslinking[J]. Journal of Applied Polymer Science, 2023. DOI:10.1002/app.54263.
[10] AOKI D, AJIRO H. Design of polyurethane composed of only hard main chain with oligo (ethylene glycol) units as side chain simultaneously achieved high biocompatible and mechanical properties[J]. Macromolecules, 2017, 50(17): 6529-6538.
[11] MIAO A, WEI M, XU F, et al. Influence of membrane hydrophilicity on water permeability: an experimental study bridging simulations[J]. Journal of Membrane Science, 2020, 604: 118087.
[12] YAN N, WANG Z, WANG Y. Highly permeable membranes enabled by film formation of block copolymers on water surface[J]. Journal of Membrane Science, 2018, 568: 40-46.
[13] ZHAO Y, ZHANG Z, DAI L, et al. Enhanced both water flux and salt rejection of reverse osmosis membrane through combining isophthaloyl dichloride with biphenyl tetraacyl chloride as organic phase monomer for seawater desalination[J]. Journal of Membrane Science, 2017, 522: 175-182.
[14] YAN F, CHEN H, LÜ Y, et al. Improving the water permeability and antifouling property of thin-film composite polyamide nanofiltration membrane by modifying the active layer with triethanolamine[J]. Journal of Membrane Science, 2016, 513: 108-116.
[1] 肖宁宁, 陈智杰, 欧阳裕福, 孟金贵, 孙阳艺, 戚栋明. 超细纤维合成革用阻燃水性聚氨酯的制备及其性能[J]. 纺织学报, 2024, 45(09): 113-120.
[2] 徐豫松, 周杰, 甘佳怡, 张涛, 张先明. 含磷氮水性聚氨酯的制备及其在涤纶织物阻燃整理中应用[J]. 纺织学报, 2024, 45(07): 112-120.
[3] 李琛, 王冬, 仲鸿天, 董朋, 付少海. 超细纤维合成革含浸用水性聚氨酯的合成及其应用[J]. 纺织学报, 2024, 45(03): 129-136.
[4] 辛华, 李阳帆, 罗浩. 复合改性氧化石墨烯接枝水性聚氨酯的制备及其性能[J]. 纺织学报, 2023, 44(08): 133-142.
[5] 孙国强, 杨建军, 吴庆云, 吴明元, 张建安, 刘久逸. 内交联型自消光水性聚氨酯树脂的制备及其性能[J]. 纺织学报, 2023, 44(07): 151-158.
[6] 庞明科, 王淑花, 史晟, 薛立钟, 郭红, 高承永, 卢建军, 赵晓婉, 王子涵. 废旧聚对苯二甲酸乙二醇酯纤维醇解制备阻燃水性聚氨酯及其应用[J]. 纺织学报, 2023, 44(02): 214-221.
[7] 马逸平, 樊武厚, 吴晋川, 蒲宗耀. 全水基杂化型无氟防水剂制备及其在涤/棉织物防水整理中应用[J]. 纺织学报, 2022, 43(02): 183-188.
[8] 刘淑强, 靖逸凡, 杨雅茹, 吴改红, 余娟娟, 王凯文, 李惠敏, 李甫, 张曼. 自修复双层微胶囊的制备及其在玄武岩织物上的应用[J]. 纺织学报, 2021, 42(04): 127-131.
[9] 丁子寒, 邱华. 纳米二氧化硅改性水性聚氨酯防水透湿涂层织物的制备及其性能[J]. 纺织学报, 2021, 42(03): 130-135.
[10] 徐艳, 籍晓倩, 陈坤林, 王潮霞. 自着色水性聚氨酯制备及其在棉织物涂层中的应用[J]. 纺织学报, 2019, 40(07): 85-89.
[11] 刘素素 姜蕾 隋晓锋 毛志平 徐红 张琳萍 钟毅. 水性聚氨酯-丙烯酸酯包覆颜料色浆在涂料染色中的应用[J]. 纺织学报, 2018, 39(09): 71-76.
[12] 徐成书 同晓妮 蔡再生 陈前维 邢建伟 任燕. 线性聚醚嵌段氨基硅油改性水性聚氨酯抗起毛起球剂的合成及其应用[J]. 纺织学报, 2018, 39(09): 84-89.
[13] 赵宝宝 钱晓明 钱幺 范金土 封严 朵永超. 水性聚氨酯机械发泡涂层的响应面法优化制备[J]. 纺织学报, 2018, 39(07): 95-099.
[14] 冯静静 柴春鹏 葛震 罗运军. 耐静水压阻燃水性聚氨酯织物涂层剂的制备及其性能[J]. 纺织学报, 2016, 37(05): 92-96.
[15] 狄剑锋 刘裕文 纪凤龙. 交联型有机硅改性聚氨酯丙烯酸酯乳液的合成及其性能[J]. 纺织学报, 2016, 37(01): 75-80.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!