纺织学报 ›› 2025, Vol. 46 ›› Issue (01): 130-137.doi: 10.13475/j.fzxb.20231206001

• 染整工程 • 上一篇    下一篇

基于脂肪酶固定化的棉织物易去油污整理及其应用

巢探宇, 叶韵, 李娜, 廖思含, 马琪凯, 崔莉()   

  1. 江南大学 纺织科学与工程学院, 江苏 无锡 214122
  • 收稿日期:2023-12-29 修回日期:2024-09-17 出版日期:2025-01-15 发布日期:2025-01-24
  • 通讯作者: 崔莉(1972—),女,副教授,博士。主要研究方向为天然高分子材料生物法功能改性。E-mail:licui@jiangnan.edu.cn
  • 作者简介:巢探宇(2000—),女,硕士生。主要研究方向为天然高分子材料生物法功能改性。
  • 基金资助:
    国家自然科学基金项目(22178145)

Degreasing finishing of cotton fabrics based on lipase immobilization and its application

CHAO Tanyu, YE Yun, LI Na, LIAO Sihan, MA Qikai, CUI Li()   

  1. College of Textile Science and Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China
  • Received:2023-12-29 Revised:2024-09-17 Published:2025-01-15 Online:2025-01-24

摘要: 为进一步提升脂肪酶的稳定性、重复使用率及其在棉织物表面的去油污性能,以棉织物为载体固定游离脂肪酶。首先,采用高碘酸钠(NaIO4)预处理棉织物,使棉织物表面的羟基氧化形成醛基,其次通过席夫碱反应在预处理棉织物表面对游离脂肪酶进行固定化,并探究脂肪酶的固定化条件、固定化脂肪酶的酶学性质、应用稳定性及其对棉织物的去油污性能。结果表明:棉织物氧化预处理的适宜条件为NaIO4浓度0.20 mol/L,氧化时间2 h;脂肪酶固定化的适宜条件为脂肪酶质量浓度15 g/L,反应时间12 h,pH值5.0,反应温度4 ℃,所得的固定化脂肪酶的最高酶活力为35 U/g棉织物;与游离脂肪酶相比,固定化脂肪酶的最适温度无明显差异,均为50 ℃,但固定化后,脂肪酶的温度稳定性、pH值稳定性以及储存稳定性均得到了一定程度的提高;固定化脂肪酶具有较好的重复使用性,并使棉织物具有良好的去油污性能。

关键词: 脂肪酶, 固定化, 棉织物, 去油污, 酶稳定性, 酶活力, 易去污整理

Abstract:

Objective Lipase is an important class of hydrolytic enzyme, and the hydrolysis substrates of lipase are usually natural oils and fats, where the hydrolysis site is the fatty acid and glycerol linked ester bond in oils and fats. Immobilized lipase has high stability and can be recycled for high quality products, having better properties than free lipase. Textile materials are a valid carrier for immobilized lipase, leading to special functional properties of the textiles.

Method The lipase molecule carries amino groups, and the hydroxyl groups of cotton can be oxidized into aldehyde groups selectively with sodium periodate. Therefore, the lipase molecules can be immobilized on the surface of cotton by the Schiff base reaction. Based on the above reaction principle, the oxidized cotton was used as the carrier for the immobilization of lipase to prepare textiles with degreasing function based on the hydrolysis of lipase. The immobilization conditions of lipase were investigated, and the enzymic properties of the immobilized lipase and the degreasing properties of the lipase-containing cotton fabric were investigated.

Results The suitable process conditions for the immobilization of lipase on cotton fabrics oxidized with sodium periodate were described as follows. 0.5 g cotton fabric was pretreated in 20 mL of 0.2 mol/L sodium periodate solution at 40 ℃ for 2 h. After sufficient washing, the lipase was cross-linked on cotton in 20 mL enzyme solution with pH 5.0 containing 15 g/L enzyme for 12 h at 4 ℃. The optimum temperature of the immobilized lipase was 50 ℃, which was similar to that of free lipase. Experiment results indicated that the immobilization process did not significantly affect the optimum temperature of lipase. However, the acid-resistant stability and temperature-resistant stability of immobilized lipase were improved compared with those of free lipase. Both the immobilized enzyme and free enzyme had similar stability under weak acidic conditions. While the stability of immobilized lipase was slightly better than that of free lipase under neutral conditions and the stability of immobilized lipase was significantly better than that of free lipase under strong acidic conditions. The immobilized lipase was significantly stabler than the free lipase at high temperatures. The immobilized lipase retained more than 50% of the activity when it was treated at 60 ℃ for 5 h, whereas the free enzyme activity decreased 80% of the activity. The immobilized lipase had certain operational stability and storage stability. When the cycles of operations exceeded 5, the enzyme activity residual rate of the immobilized enzyme began to decrease significantly, showing that the immobilized lipase had a better stability of operation. The activity of the immobilized lipase was decreased slowly when it was stored at 20 ℃ during the first week. After one week, enzyme activity was decreased rapidly. More than 50% activity of the lipase was lost after storing for 15 d. The immobilized lipase exhibited good degreasing activity for olive oil and edible chili oil. The oil stains on the cotton fabrics with immobilized lipase almost completely disappeared after the treatment in water, whereas a small amount of oil stains remained on the cotton fabrics without immobilized lipase. Fatty acid production was detected in the degreasing process of olive oil.

Conclusion The optimal pretreatment conditions for cotton fabric were found to be NaIO4 concentration of 0.20 mol/L and oxidation time of 2 h. The suitable conditions for lipase immobilization were identified to be lipase concentration of 15 g/L, reaction time of 12 h, pH value of 5.0, and reaction temperature of 4 ℃. The highest activity of the immobilized lipase was 35 U/g cotton fiber. Compared with the free lipase, the temperature stability and pH stability of the immobilized lipase were improved, and the lipase had better reusability and the cotton fabrics were endowed with good degreasing performance.

Key words: lipase, immobilization, cotton fabric, degreasing, enzyme stability, enzyme activity, degreasing finishing

中图分类号: 

  • TS195.5

图1

预处理时间对固定化脂肪酶酶活力的影响"

图2

固定化时间对固定化脂肪酶酶活力的影响"

图3

脂肪酶质量浓度对固定化脂肪酶酶活力的影响"

图4

pH值对固定化脂肪酶酶活力的影响"

表1

固定化温度对固定化脂肪酶酶活力的影响"

固定化温度/℃ 酶活力/(U·g-1)
4 29.63±0.67
20 19.84±0.56
40 15.12±0.39

图5

脂肪酶的最适温度"

图6

脂肪酶的温度稳定性"

图7

脂肪酶的pH值稳定性"

图8

固定化脂肪酶的重复使用稳定性"

图9

固定化脂肪酶的储存稳定性"

图10

固定化脂肪酶对橄榄油的去油污效果"

图11

固定化脂肪酶对辣椒油的去油污效果"

图12

从棉织物提取的油相及缓冲残留液的液质联用分析结果"

[1] CHEN J L, FREMPONG K E B, DING P P, et al. Plant polyphenol surfactant construction with strong surface activity and chelation properties as efficient decontamination of U22+ on cotton fabric[J]. International Journal of Biological Macromolecules, 2024.DOI:10.1016/J.IJBZOMAC.2023.127451.
[2] ZHANG X L, SUN Y X, LIU Y F, et al. UiO-66-NH2 fabrics: role of trifluoroacetic acid as a modulator on MOF uniform coating on electrospun nanofibers and efficient decontamination of chemical warfare agent simulants[J]. ACS Applied Materials & Interfaces, 2021, 13(33): 39976-39984.
[3] 杨思贤, 纯棉织物防污易去污抗菌一浴法整理工艺研究[D]. 上海: 东华大学, 2019: 3-4.
YANG Sixian. Study on the antifouling, easy decontamination and antibacterial of cotton fabric with one-bath finishing[D]. Shanghai: Donghua University, 2019: 3-4.
[4] 张凤秀, 张光先, 王明桥, 等. 基于脂肪酶催化的柞蚕丝织物接枝脂肪醇疏水整理[J]. 纺织学报, 2013, 34(10): 117-120.
ZHANG Fengxiu, ZHANG Guangxian, WANG Mingqiao, et al. Hydrophobic finish of tussah silk fabric by grafting fatty alcohol using lipase enzymatic cata-lysis[J]. Journal of Textile Research, 2013, 34(10): 117-120.
[5] 李旭明, 师利芬, 钱志华, 等. 脂肪酶处理对涤纶织物亲水性能的改善[J]. 纺织学报, 2012, 33(4): 91-94.
LI Xuming, SHI Lifen, QIAN Zhihua, et al. The improvement of wettability of PET fabrics treated by lipase[J]. Journal of Textile Research, 2012, 33(4): 91-94.
[6] 张灿, 姜国芳, 杨江楠, 等. 多孔材料固定化脂肪酶的研究进展[J]. 分子催化, 2020, 34(4): 378-396.
ZHANG Can, JIANG Guofang, YANG Jiangnan, et al. Research progress of immobilized lipase on porous materials[J]. Journal of Molecular Catalysis, 2020, 34(4): 378-396.
[7] MARÍA-GUADALUPE S, RODOLFO Q, ADELASOFÍA R, et al. Polypropylene as a selective support for the immobilization of lipolytic enzymes: hyper-activation, purification and biotechnological applications[J]. Journal of Chemical Technology & Biotechnology, 2021, 97(2): 436-445.
[8] 聂华丽, 朱利民. 纤维载体固定化酶的制备及其应用[J]. 纺织学报, 2006, 27(7): 104-108.
NIE Huali, ZHU Limin. Fiber as support for immobilized enzyme and its application[J]. Journal of Textile Research, 2006, 27(7): 104-108.
[9] LI W N, SHEN H Q, TAO Y F, et al. Amino silicones finished fabrics for lipase immobilization: fabrics finishing and catalytic performance of immobilized lipase[J]. Process Biochemistry, 2014, 49(9): 1488-1496.
[10] DARWISH S S, HASSAN M E, AHMED H E, et al. Evaluation of effectiveness of covalently immobilized alpha-amylase and lipase in cleaning of historical textiles[J]. Biointerface Research in Applied Chemistry, 2021, 11(3): 9952-9962.
[11] WANG X, WANG X H, CONG F D, et al. Synthesis of cinnamyl acetate catalysed by highly reusable cotton-immobilized pseudomonas fluorescens lipase[J]. Biocatalysis and Biotransformation, 2018, 36(4): 332-339.
[12] BILAL M, FERNANDES C D, MEHMOOD T, et al. Immobilized lipases-based nano-biocatalytic systems: a versatile platform with incredible biotechnological potential[J]. International Journal of Biological Macromolecules, 2021, 175(1): 108-122.
[13] GLORIA F L, PALOMO J M, MATEO C, et al. Glutaraldehyde cross-linking of lipases adsorbed on aminated supports in the presence of detergents leads to improved performance[J]. Macromolecules, 2006, 7(9): 2610-2615.
[14] ARASTOO B, AREZOO S, FATEMEH Z, et al. Lipase immobilization on a novel class of Zr-MOF/electrospun nanofibrous polymers: biochemical characterization and efficient biodiesel production[J]. International Journal of Biological Macromolecules, 2021, 192: 1292-1303.
[15] 闫腾, 岳新霞, 孙凤, 等. 高碘酸钠氧化对棉纤维基吸附剂吸附性能的影响[J]. 纺织导报, 2014(2): 84-87.
YAN Teng, YUE Xinxia, SUN Feng, et al. Effect of sodium periodate oxidation on adsorption properties of cotton fiber-based adsorbent[J]. China Textile Leader, 2014 (2): 84-87.
[16] 刘锁, 王雅倩, 魏安方, 等. 功能化水刺粘胶纤维膜的制备及其在漆酶固定化中的应用[J]. 纺织学报, 2022, 43(5): 124-129.
LIU Suo, WANG Yaqian, WEI Anfang, et al. Preparation of functional spunlaced viscose fiber membrane and its application for laccase immobili-zation[J]. Journal of Textile Research, 2022, 43(5): 124-129.
[17] 刘新喜, 彭立凤. 棉纤维膜固定化脂肪酶的研究[J]. 河北科技大学学报, 2001, 22(2): 15-18.
LIU Xinxi, PENG Lifeng. Study on immobilization of lipase on cellulose membrane[J]. Journal of Hebei University of Science and Technology, 2001, 22(2): 15-18.
[18] 姜峻颖, 马子宾, 孙晶晶, 等. 海洋脂肪酶YS2071的固定化及酶学性质研究[J]. 食品与发酵工业, 2017, 43(6): 41-48.
JIANG Junying, MA Zibin, SUN Jingjing, et al. The immobilization and enzymatic properties of lipase YS2071[J]. Food and Fermentation Industries, 2017, 43(6): 41-48.
[19] 张德华. 蛋白质与酶工程[M]. 合肥: 合肥工业大学出版社, 2015: 145.
ZHANG Dehua. Protein and enzyme engineering[M]. Hefei: Hefei Univerisity of Technology Publishing House, 2015: 145.
[20] 彭立凤, 刘新喜. 棉织物上SESA活化法固定化脂肪酶工艺的研究[J]. 食品工业科技, 2001, 22 (2): 30-32.
PENG Lifeng, LIU Xinxi. Study on immobilized lipase on cotton fabric by SESA activation[J]. Science and Technology of Food Industry, 2001, 22(2):30-32.
[21] 徐坚, 王玉军, 骆广生, 等. 利用醋酸纤维素/聚四氟乙烯复合膜中的微结构固定化脂肪酶[J]. 化工学报, 2006, 57(10): 2372-2377.
XU Jian, WANG Yujun, LUO Guangsheng, et al. Candida rugosa lipase immobilized by special microstructure in CA/PTFE composite membrane[J]. Journal of Chemical Industry and Engineering, 2006, 57(10): 2372-2377.
[1] 武浩, 周嫦娥, 高振清, 冯嘉禾. 基于还原-氧化体系的活性染料染色棉织物剥色[J]. 纺织学报, 2024, 45(12): 128-136.
[2] 王心雨, 郭明明, 张乐乐, 郑伟杰, AMJAD Farooq, 王宗乾. 耐久性抗菌超疏水棉织物的制备及其性能[J]. 纺织学报, 2024, 45(11): 170-177.
[3] 肖渊, 童垚, 胡呈安, 武贤军, 杨磊鹏. 导电复合材料涂覆式全织物基柔性压阻传感器制备[J]. 纺织学报, 2024, 45(10): 152-160.
[4] 张应秀, 徐丽慧, 潘虹, 姚程健, 赵红, 窦梅冉, 沈勇, 赵诗怡. 基于甘蔗渣多孔碳的超疏水棉织物制备及其性能[J]. 纺织学报, 2024, 45(10): 161-169.
[5] 赵强, 刘正江, 高晓平, 张云婷, 张宏. 蒙脱土协同TiO2整理棉织物的功能性[J]. 纺织学报, 2024, 45(09): 121-128.
[6] 刘慧, 李平, 朱平, 刘云. γ-脲基丙基三乙氧基硅烷/苯基膦酸阻燃抗菌棉织物的制备及其性能[J]. 纺织学报, 2024, 45(08): 205-214.
[7] 赵攀, 谭文丽, 赵心蕊, 付金凡, 刘成显, 袁久刚. 基于离子液体微溶焊接的可降解薄膜制备及其性能[J]. 纺织学报, 2024, 45(08): 89-98.
[8] 李旭, 刘祥吉, 靳鑫, 杨承昊, 董朝红. 耐久高效磷/氮协同阻燃剂的制备及其在棉织物上的应用[J]. 纺织学报, 2024, 45(07): 121-129.
[9] 韩华, 胡安然, 孙艺文, 丁作伟, 李伟, 张彩云, 郭增革. 碘释放抗菌涂层棉织物的制备及其在伤口修复中的应用[J]. 纺织学报, 2024, 45(05): 113-120.
[10] 薛宝霞, 杨色, 张春艳, 刘晶, 刘勇, 程伟, 张利, 牛梅. 聚氮异丙基丙烯酰胺抗菌水凝胶复合棉织物的制备及其性能[J]. 纺织学报, 2024, 45(05): 129-137.
[11] 向娇娇, 柳浩, 欧阳申珅, 马万彬, 柴丽琴, 周岚, 邵建中, 刘国金. 高疏水性双面结构生色棉织物的一步法制备[J]. 纺织学报, 2024, 45(04): 111-119.
[12] 李丽丽, 袁亮, 唐雨霞, 杨文菊, 王浩. 聚多巴胺/壳聚糖改性棉织物的茶色素染色及其抗菌和防紫外线性能[J]. 纺织学报, 2024, 45(03): 106-113.
[13] 田博阳, 王向泽, 杨湙雯, 吴晶. 非对称结构纤维膜的制备及其热调控性能[J]. 纺织学报, 2024, 45(02): 11-20.
[14] 陈顺, 钱坤, 梁付巍, 郭文文. 丁香酚基复合涂层阻燃疏水棉织物的制备及其性能[J]. 纺织学报, 2023, 44(12): 115-122.
[15] 陈贝, 任李培, 肖杏芳. 铽-金属有机框架改性棉织物的制备及其pH值探测性能[J]. 纺织学报, 2023, 44(12): 123-129.
Viewed
Full text
30
HTML PDF
Just accepted Online first Issue Just accepted Online first Issue
0 0 10 0 0 20

  From Others local
  Times 17 13
  Rate 57% 43%

Abstract
56
Just accepted Online first Issue
0 0 56
  From Others local
  Times 40 16
  Rate 71% 29%

Cited

Web of Science  Crossref   ScienceDirect  Search for Citations in Google Scholar >>
 
This page requires you have already subscribed to WoS.
  Shared   
  Discussed   
No Suggested Reading articles found!