纺织学报 ›› 2024, Vol. 45 ›› Issue (10): 184-190.doi: 10.13475/j.fzxb.20240100501

• 服装工程 • 上一篇    下一篇

基于极径的青年女性肩胸腰部形态表征及差异性分析

邱文池1, 李涛1, 马玲1, 吕叶馨1,2, 邹奉元1,3,4()   

  1. 1.浙江理工大学 服装学院, 浙江 杭州 310018
    2.金华职业技术学院 艺术创意学院, 浙江 杭州 310018
    3.浙江理工大学 丝绸文化传承与产品设计数字化技术文化和旅游部重点实验室, 浙江 杭州 310018
    4.浙江理工大学 浙江省服装工程技术研究中心, 浙江 杭州 310018
  • 收稿日期:2024-01-02 修回日期:2024-06-25 出版日期:2024-10-15 发布日期:2024-10-22
  • 通讯作者: 邹奉元(1962—),男,教授,硕士。主要研究方向为服装数字化技术。E-mail:zfy166@zstu.edu.cn
  • 作者简介:邱文池(1999—),女,硕士生。主要研究方向为人体工程与服装数字化技术。
  • 基金资助:
    浙江理工大学科研启动基金项目(23072078-Y);国家级大学生创新创业训练计划项目(202210338032);金华市重点科技计划项目(2023-3-161)

Characterization and differential analysis of young women's shoulder-chest-waist relations based on polar diameter

QIU Wenchi1, LI Tao1, MA Ling1, LÜ Yexin1,2, ZOU Fengyuan1,3,4()   

  1. 1. Fashion College, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, China
    2. Creative Arts School, Jinhua Polytechnic, Hangzhou, Zhejiang 310018, China
    3. Key Laboratory of Silk Culture Heritage and Products Design Digital Technology, Ministry of Culture and Tourism, Hangzhou, Zhejiang 310018, China
    4. Clothing Engineering Research Center of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, China
  • Received:2024-01-02 Revised:2024-06-25 Published:2024-10-15 Online:2024-10-22

摘要:

为表征同一号型下的人体体型形态差异,选取与原型样板密切关联的肩部、胸部及腰部水平特征截面进行研究。通过[TC]2获取145名18~25岁青年女性的三维点云数据,选取占比最高的160/84 A体型样本,采用K-means聚类进行体型细分,提取肩部、上胸围、胸围、下胸围、腰围5层水平特征截面,运用极径表征形态差异。研究结果表明:同一国标号型身高胸围数据虽然相似,但存在形态差异;160/84 A体型可分为圆厚体、宽扁体、中等体,分别占比7.69%、53.85%及38.64%。3类体型中宽扁体肩宽>中等体肩宽>圆厚体肩宽,肩点处最大极差为3.82 cm。圆厚体的上胸围厚、胸围厚和下胸围厚最厚,其次是中等体胸围厚,宽扁体的胸围厚最薄,在前中处最大极差分别为3.22、3.62和2.97 cm。宽扁体较圆厚体、中等体肩点位置向前中方向偏移10°,宽扁体、中等体胸点位置较圆厚体向侧缝方向偏移10°~20°。

关键词: 肩胸腰部, 特征截面, K-means聚类, 截面极径, 人体形态表征, 青年女性

Abstract:

Objective Human morphology characterization and quantification play an important role in garment fit, pattern generation and body type classification. The characterization and differential analysis of human morphology under the same number of sizes deserves to be explored in depth. To characterize the morphological differences in body surface shapes under the same size category, this study is focused on the shoulder, chest, and waist horizontal-sections related to the prototype pattern.

Method The three-dimensional point cloud data of 145 young women aged 18-25 years were obtained through [TC]2. Samples with the highest proportion of size 160/84 A were selected. K-means clustering was used to quantify the morphological characterization after subdividing the body types that accounted for the largest proportion of the body type, extracting the horizontal circumference cross-section curves of the shoulder, upper bust, bust, under bust, and waist of each classified intermediate body. Due to minor movements or variations in standing posture during 3-D scanning, coordinate system discrepancies may be appeared between the characteristic cross-sections and the system coordinate system. To address this problem, the smallest external rectangle method was applied to align the x and y axes of the characteristic cross-sections in the system coordinate system. Then, each horizontal cross-section was aligned with the mass center as the origin. Subsequently, the cross-section polar diameters based on each body shape morphology were used to plot the centroid-curve for morphological quantification and analysis.

Results The body type of 160/84 A was divided into round-thick body, wide-flat body and medium body, accounting for 7.69%, 53.85% and 38.64%, respectively. The average chest circumference and waist circumference of three types of 160/84A sub-body types were (83.70±0.56) cm and (66.84±5.57) cm, respectively. The shoulder width of the three sub-body types was found to follow the order of wide-flat body > medium body > round-thick body, with a maximum range of 3.82 cm at the shoulder point. The round-thick body has the thickest upper bust circumference, bust circumference, and under bust circumference, followed by the medium body, while the wide-flat body has the thinnest bust circumference, with maximum ranges at the front center of 3.22 cm, 3.62 cm, and 2.97 cm, respectively. The shoulder position of the wide-flat body was 10° away from the anterior-middle direction than that of the round-thick body and medium body, and the chest position of the wide-flat body and medium body was 10°-20° away from the lateral suture direction than that of the round-thick body.

Conclusion The results showed that although the data of height and chest circumference of the same national standard model were similar, there were morphological differences. For the wide-flat body type, the most notable differences occur at the shoulder point and where the cross-section intersects with the lateral suture. In contrast, the round-thick body type shows significant differences at the intersections of the cross-section with the anterior and posterior midpoints. Then, each cross-section was analyzed, revealing that shoulder morphology shows the greatest variation at the shoulder peak. Additionally, the upper bust circumference, bust circumference, and under bust circumference display the most significant differences at the anterior midpoints. Girth morphology differences are most pronounced at the lateral midpoints for each body type.

Key words: shoulder-chest-waist, characteristic cross section, K-means clustering, polar radius of section, human body morphology representation, young women

中图分类号: 

  • TS941.17

图1

上体截面确定"

图2

点云处理"

图3

截面极径提取"

图4

国标体型分布"

图5

手肘法"

表1

中间体规格参数"

中间体 胸围 腰围 颈根围 前胸高 前胸宽 背长 后背宽 肩宽(1/2) 袖笼深 小肩宽
体型1 82.86 64.89 35.36 18.8 29.86 35.49 28.86 17.47 9.80 11.61
体型2 84.29 69.47 39.43 21.07 30.22 35.59 31.01 19.99 10.58 12.50
体型3 83.95 66.18 41.33 18.69 29.71 35.08 30.79 19.39 10.97 12.28
均值 83.70 66.85 38.71 19.52 29.93 35.39 30.22 18.95 10.45 12.13

图6

体型分类图"

图7

截面形态对比"

图8

截面极径差值"

表2

160/84 A体型下细分体型特征"

体型
编号
形态
特征
a b c d e 体型
判别
1 横向 扁平 圆厚体
矢向
2 横向 丰满 宽扁体
矢向
3 横向 中等 中等 中等 中等 中等 中等体
矢向 中等 中等 中等 中等 中等

图9

各体型原型样板"

表3

各体型样板部分尺寸差值"

部位 样板1-样板0 样板2-样板0 样板3-样板0
胸宽 -1.59 -0.99 -1.31
背宽 -1.66 -0.53 -0.58
袖窿宽 2.68 2.12 2.20
前身长 -1.70 -1.44 -2.02
小肩宽 -0.76 0.13 -0.09
[1] ZHANG Y, MA L, GUO Z, et al. Personalized garment pattern generation based on space vector and distance ease[J]. International Journal of Clothing Science and Technology, 2023, 35(5): 715-737.
[2] CHRIMES C, BOARDMAN R, MCCORMICK H, et al. Investigating the impact of body shape on garment fit[J]. Journal of Fashion Marketing and Management, 2023, 27(5): 741-759.
[3] KIM I H, HAN H, SHIN S J H. Characteristics of women's basic bodice pattern formation in relation to the anthropometric references[J]. International Journal of Clothing Science and Technology, 2021, 33(2): 188-198.
[4] DOMINGO J, IBÁÑEZ M V, SIMÓ A, et al. Modeling of female human body shapes for apparel design based on cross mean sets[J]. Expert Systems with Applications, 2014, 41(14): 6224-6234.
[5] ZAKARIA N, RUZNAN W S. Developing apparel sizing system using anthropometric data: body size and shape analysis, key dimensions, and data segmentation[G]//ZAKARIA N, GUPTA D. Anthropometry, Apparel Sizing and Design (2nd Ed). Woodhead Publishing, 2020: 91-121.
[6] BAO C, MIAO Y, GU B, et al. 3D interactive garment parametric pattern-making and linkage editing based on constrained contour lines[J]. International Journal of Clothing Science and Technology, 2021, 33(5): 696-723.
[7] LEI G, LI X. A new approach to 3D pattern-making for the apparel industry: Graphic coding-based localization[J]. Computers in Industry, Amsterdam: Elsevier, 2022. DOI: 10.1016/j.compind.2021.103587.
[8] SUN J, CAI Q, LI T, et al. Body shape classification and block optimization based on space vector length[J]. International Journal of Clothing Science and Technology, 2019, 31(1): 115-129.
[9] BARTOL K, BOJANIC D, PETKOVIC T, et al. A Review of Body Measurement Using 3D Scanning[J]. IEEE Access, 2021, 9: 67281-67301.
[10] PARKER C J, GILL S, HARWOOD A, et al. A method for increasing 3D body scanning's precision: gryphon and consecutive scanning[J]. Ergonomics, 2022, 65(1): 39-59.
[11] JIN P, FAN J, ZHENG R, et al. Design and research of automatic garment-pattern-generation system based on parameterized design[J]. Sustainability, 2023. DOI 10.3390/su15021268.
[12] 王婷, 顾冰菲. 基于图像的人体颈肩部三维模型构建[J]. 纺织学报, 2021, 42(1): 125-132.
WANG Ting, GU Bingfei. 3-D modeling of neck-shoulder part based on human photos[J]. Journal of Textile Research, 2021, 42(1): 125-132.
[13] CARUFEL R, BYE E. Exploration of the body-garment relationship theory through the analysis of a sheath dress[J]. Fashion and Textiles, 2020, 7(1): 22.
[14] 薛福平. 日本文化女装新原型构成要素与造型的关系[J]. 纺织学报, 2007, 28(10): 91-94.
XUE Fuping. Relationship of constitute element and silhouette about the Japanese New Cultural Women's Wear Block[J]. Journal of Textile Research, 2007, 28(10): 91-94.
[1] 吴金颖, 李炘, 丁笑君, 邱文池, 邹奉元. 基于空间向量模长的青年女性腰腹臀部形态分类与判别[J]. 纺织学报, 2024, 45(04): 180-187.
[2] 聂梓萌, 杜劲松, 朱建龙, 岳春明, 葛旭光. 基于仿真区域性数据的服装团体定制归号机制[J]. 纺织学报, 2023, 44(05): 191-197.
[3] 任艳博, 蒋超, 王教庆, 俞琳, 王园园. 基于聚类算法和色彩网络的蝴蝶色彩分析及应用[J]. 纺织学报, 2021, 42(05): 103-108.
[4] 陈希雅, 赵颖, 蔡晓裕, 顾冰菲. 基于局部特征的青年女性腿部形态分类[J]. 纺织学报, 2020, 41(11): 136-142.
[5] 刘婷婷, 徐红, 梅馨元, 刘一心, 肖爱民. 基于XGBoost算法对新疆女性臀部体型判别及原型修正[J]. 纺织学报, 2020, 41(07): 147-153.
[6] 余佳佳, 李健. 中国东部地区青年女性人体体型分类[J]. 纺织学报, 2020, 41(05): 134-139.
[7] 刘焘, 徐利平, 邹奉元. 青年女性腰部形态分类对旗袍腰省位置设定的影响[J]. 纺织学报, 2019, 40(12): 114-118.
[8] 张缓缓, 马金秀, 景军锋, 李鹏飞. 基于改进的加权中值滤波与K-means聚类的织物缺陷检测[J]. 纺织学报, 2019, 40(12): 50-56.
[9] 王军 李晓久 潘力 姚彤 于佐君. 东北地区青年女性腰臀部体型特征与分类[J]. 纺织学报, 2018, 39(04): 106-110.
[10] 夏凤勤 毋戈 谢昊洋 钟跃崎. 基于人体纵截面特征曲线的体型分类[J]. 纺织学报, 2017, 38(06): 86-91.
[11] 贺义军 石小强 王宏付. 青年女性肩部弯度特征及对贴体女上装结构影响[J]. 纺织学报, 2016, 37(10): 94-100.
[12] 叶晓露 庞程方 金娟凤 邹奉元. 短裤特征截面曲线的径向基函数神经网络模型构建[J]. 纺织学报, 2015, 36(05): 83-88.
[13] 倪世明 金娟凤 庞程方 邹奉元. 基于纵向轮廓曲线的青年女性体型细分研究[J]. 纺织学报, 2014, 35(8): 87-0.
[14] 张秀, 王宏付. 基于三维人体测量的青年女性裆底高特征探讨[J]. 纺织学报, 2012, 33(7): 100-103.
[15] 黄灿艺. 福建地区青年女性体型划分与尺寸分档[J]. 纺织学报, 2012, 33(5): 111-115.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!