纺织学报 ›› 2025, Vol. 46 ›› Issue (01): 42-51.doi: 10.13475/j.fzxb.20240101801
LIANG Wenyu, JI Dongxiao(), QIN Xiaohong
摘要: 为解决纤维基电子显示器件多层结构制备的难题,采用一步法制备聚偏氟乙烯(PVDF)/ZnS:Cu2+/镀银锦纶包芯纱,即将镀银锦纶作为芯纱,PVDF/ZnS:Cu2+作为皮层,采用共轭静电纺丝技术在镀银锦纶上包覆发光层,并对其各项性能进行测试与表征。讨论了PVDF与ZnS:Cu2+无机发光颗粒质量比对包芯纱可纺性及其各项性能的影响。结果表明:在PVDF/ZnS:Cu2+/镀银锦纶包芯纱中,ZnS:Cu2+颗粒通过PVDF微纳米纤维的物理缠结作用包覆在镀银锦纶上;在PVDF与ZnS:Cu2+质量比为1:4时,ZnS:Cu2+在纱线中负载量最大;在0.007 5 V/μm、2 kHz交流电激发下,包芯纱亮度达到3.30 cd/m2,4 h内变化小于10%;包芯纱的断裂强度为16.718 MPa,断裂伸长率为46.588%,弯曲刚度为0.026 cN·cm2,具有较好的柔性和可穿戴性,在制备可穿戴柔性显示器上具有较好的应用前景。
中图分类号:
[20] | 杨宇晨, 覃小红, 俞建勇. 静电纺纳米纤维功能性纱线的研究进展[J]. 纺织学报, 2021, 42(1): 1-9. |
YANG Yuchen, QIN Xiaohong, YU Jianyong. Research progress of transforming electrospun nanofibers into functional yarns[J]. Journal of Textile Research, 2021, 42(1): 1-9. | |
[21] | ZHANG D, ZHANG X, LI X, et al. Enhanced piezoelectric performance of PVDF/BiCl3/ZnO nanofiber-based piezoelectric nanogenerator[J]. European Polymer Journal, 2022. DOI:10.1016/j.eurpolymj.2021.110956. |
[1] | BIWA G, AOYAGI A, DOI M, et al. Technologies for the crystal LED display system[J]. Journal of the Society for Information Display, 2021, 29(6): 435-445. |
[2] | LEE S M, KWON J H, KWON S, et al. A Review of flexible OLEDs toward highly durable unusual displays[J]. IEEE Transactions on Electron Devices, 2017, 64(5): 1922-1931. |
[3] | CHAN I P, SEONG M, KIM M A, et al. World's first large size 77-inch transparent flexible OLED display[J]. Journal of the Society for Information Display, 2018, 26(5): 287-295. |
[4] | ZHU H, SHIN E, LIU A, et al. Printable semiconductors for backplane TFTS of flexible OLED displays[J]. Advanced Functional Materials, 2019. DOI:10.1002/adfm.201904588. |
[5] | 施翔, 王臻, 彭慧胜. 织物显示器件的研究进展[J]. 纺织学报, 2023, 44(1): 21-29. |
SHI Xiang, WANG Zhen, PENG Huisheng. Research progress in display units fabricated from textiles[J]. Journal of Textile Research, 2023, 44(1): 21-29. | |
[6] | DING W, SUN J, CHEN G, et al. Stretchable multi-luminescent fibers with AIEgens[J]. Journal of Materials Chemistry C, 2019, 7: 10769-10776. |
[7] | CHOI S, KWON S, KIM H, et al. Highly flexible and efficient fabric-based organic light-emitting devices for clothing-shaped wearable displays[J]. Scientific Reports, 2017. DOI: 10.1038/s41598-017-06733-8. |
[8] | JAYATHILAKA W, CHINNAPPAN A, TEY J N, et al. Alternative current electroluminescence and flexible light emitting devices[J]. Journal of Materials Chemistry C, 2019(7):5553-5572. |
[9] | 王霁龙, 刘岩, 景媛媛, 等. 纤维基可穿戴电子设备的研究进展[J]. 纺织学报, 2020, 41(12): 157-165. |
WANG Jilong, LIU Yan, JING Yuanyuan, et al. Advances in fiber-based wearable electronic devices[J]. Journal of Textile Research, 2020, 41(12): 157-165. | |
[10] | YIN D, CHEN Z Y, JIANG N R, et al. Highly transparent and flexible fabric-based organic light emitting devices for unnoticeable wearable displays[J]. Organic Electronics, 2020, 76(1): 105494-105494. |
[11] | KIM W, KWON S, HAN Y C, et al. Reliable actual fabric-based organic light-emitting diodes: toward a wearable display[J]. Advanced Electronic Materials, 2016. DOI:10.1002/aelm.201600220. |
[12] | LIANG G, YI M, HU H, et al. Coaxial-structured weavable and wearable electroluminescent fibers[J]. Advanced Electronic Materials, 2017. DOI:10.1002/aelm.201700401. |
[13] | KWON S, HWANG Y H, NAM M, et al. Recent progress of fiber shaped lighting devices for smart display applications: a fibertronic perspective[J]. Advanced Materials, 2020. DOI:10.1002/adma.201903488. |
[14] | HWANG Y H, KWON S, SHIN J B, et al. Bright-multicolor,highly efficient, and addressable phosphorescent organic light-emitting fibers: toward wearable textile information displays[J]. Advanced Functional Materials, 2021. DOI:10.1002/adfm.202009336. |
[15] | PARK H J, KIM S M, LEE J H, et al. Self-powered motion-driven triboelectric electroluminescence textile[J]. ACS Applied Materials & Interfaces, 2019, 11: 5200-5207. |
[16] | ZHANG Z, CUI L, SHI X, et al. Textile display for electronic and brain-interfaced communications[J]. Advanced Materials, 2018. DOI:10.1002/adma.201800323. |
[17] | SHI X, ZUO Y, ZHAI P, et al. Large-area display textiles integrated with functional systems[J]. Nature, 2021, 591: 240-245. |
[18] | LI P, WANG Y, HE X, et al. Wearable and interactive multicolored photochromic fiber display[J]. Light: Science & Applications, 2024. DOI:10.1038/s41377-024-01383-8. |
[19] | HEO J S, EOM J, KIM Y H, et al. Recent progress of textile-based wearable electronics: a comprehensive review of materials, devices, and applications[J]. Small, 2018. DOI: 10.1002/smll.201703034. |
[1] | 詹克静, 杨鑫, 张应龙, 张昕, 潘志娟. 自凝聚丝素蛋白微纳米纤维膜的制备及其力学增强[J]. 纺织学报, 2025, 46(02): 10-19. |
[2] | 范梦晶, 岳欣琰, 邵剑波, 陈雨, 洪剑寒, 韩潇. 基于静电纺纤维包芯纱的电容式扭转传感器构建及其传感性能[J]. 纺织学报, 2025, 46(02): 106-112. |
[3] | 赵超, 金欣, 王闻宇, 朱正涛. 自充电超级电容器用聚丙烯腈纳米纤维隔膜的制备及其性能[J]. 纺织学报, 2025, 46(02): 20-25. |
[4] | 朱雪, 钱鑫, 郝梦圆, 张永刚. MXene/碳纳米纤维膜的静电纺丝-电泳沉积复合工艺制备及其电磁屏蔽性能[J]. 纺织学报, 2025, 46(01): 1-8. |
[5] | 张曼, 权英, 冯宇, 李甫, 张爱琴, 刘淑强. 纺织基可穿戴柔性应变传感器的研究进展[J]. 纺织学报, 2024, 45(12): 225-233. |
[6] | 王雅文, 刘娜, 王元非, 吴桐. 静电纺纳米纤维纱线及其对细胞迁移和血管化的调控[J]. 纺织学报, 2024, 45(12): 25-32. |
[7] | 卢海龙, 于影, 左雨欣, 王浩然, 陈洪立, 汝欣. 取向增强抗CO2腐蚀纤维薄膜的制备及其性能[J]. 纺织学报, 2024, 45(12): 33-40. |
[8] | 雷福旺, 冯其, 侯奥菡, 赵振鸿, 谭佳兆, 赵景, 王先锋. 聚偏氟乙烯-聚丙烯腈/SiO2单向导湿纤维膜的制备及其性能[J]. 纺织学报, 2024, 45(12): 1-8. |
[9] | 刘霞, 吴改红, 闫子豪, 王彩柳. 智能相变调温聚乳酸纤维膜的制备及其性能[J]. 纺织学报, 2024, 45(12): 18-24. |
[10] | 缪璐璐, 孟小奕, 董正梅, 彭倩, 何林伟, 邹专勇. 热处理工艺对喷气涡流纺低熔点涤纶长丝包芯纱力学性能的影响[J]. 纺织学报, 2024, 45(11): 73-79. |
[11] | 刘健, 王程皓, 董守骏, 刘泳汝. 半封闭自由表面式静电纺丝喷头设计与优化[J]. 纺织学报, 2024, 45(11): 215-225. |
[12] | 王宇航, 谭晶, 李好义, 徐锦龙, 杨卫民. 纳米纤维纱线静电纺制备技术研究进展[J]. 纺织学报, 2024, 45(11): 235-243. |
[13] | 刘延波, 高鑫羽, 郝铭, 胡晓东, 杨波. 基于光热改性的复合纤维毡及其在高黏度油吸附中的应用[J]. 纺织学报, 2024, 45(11): 55-64. |
[14] | 李韩, 王海霞, 张旭, 刘丽萍, 刘小琨. 基于聚乙烯醇缩丁醛/聚乙二醇的同轴纳米纤维膜储热织物制备及其热管理性能[J]. 纺织学报, 2024, 45(11): 37-45. |
[15] | 刘允璞, 刘威, 王黎明, 覃小红. 静电纺三维纳米纤维材料的制备方法与应用进展[J]. 纺织学报, 2024, 45(11): 226-234. |
|