纺织学报 ›› 2025, Vol. 46 ›› Issue (01): 42-51.doi: 10.13475/j.fzxb.20240101801

• 纺织工程 • 上一篇    下一篇

微纳米纤维包芯纱制备及其电致发光性能

梁雯宇, 季东晓(), 覃小红   

  1. 东华大学 纺织学院, 上海 201620
  • 收稿日期:2024-01-18 修回日期:2024-10-07 出版日期:2025-01-15 发布日期:2025-01-15
  • 通讯作者: 季东晓(1987—),男,研究员,博士。主要研究方向为纳米纤维智能纺织品。E-mail:jidongxiao@dhu.edu.cn
  • 作者简介:梁雯宇(1999—),女,硕士生。主要研究方向为电致发光纱线。
  • 基金资助:
    国家自然科学基金青年科学基金项目(52202218);上海市自然科学基金面上项目(22ZR1401000)

Preparation of micro-nanofiber core-spun yarn and its electroluminescent properties

LIANG Wenyu, JI Dongxiao(), QIN Xiaohong   

  1. College of Textiles, Donghua University, Shanghai 201620, China
  • Received:2024-01-18 Revised:2024-10-07 Published:2025-01-15 Online:2025-01-15

摘要: 为解决纤维基电子显示器件多层结构制备的难题,采用一步法制备聚偏氟乙烯(PVDF)/ZnS:Cu2+/镀银锦纶包芯纱,即将镀银锦纶作为芯纱,PVDF/ZnS:Cu2+作为皮层,采用共轭静电纺丝技术在镀银锦纶上包覆发光层,并对其各项性能进行测试与表征。讨论了PVDF与ZnS:Cu2+无机发光颗粒质量比对包芯纱可纺性及其各项性能的影响。结果表明:在PVDF/ZnS:Cu2+/镀银锦纶包芯纱中,ZnS:Cu2+颗粒通过PVDF微纳米纤维的物理缠结作用包覆在镀银锦纶上;在PVDF与ZnS:Cu2+质量比为1:4时,ZnS:Cu2+在纱线中负载量最大;在0.007 5 V/μm、2 kHz交流电激发下,包芯纱亮度达到3.30 cd/m2,4 h内变化小于10%;包芯纱的断裂强度为16.718 MPa,断裂伸长率为46.588%,弯曲刚度为0.026 cN·cm2,具有较好的柔性和可穿戴性,在制备可穿戴柔性显示器上具有较好的应用前景。

关键词: 静电纺丝, 聚偏氟乙烯, 包芯纱, 电致发光性能, 柔性电子显示器件, 智能纺织品

Abstract:

Objective Flexible thin film display devices have inherent challenges in reduced stability and comfort. Luminescent fibers have excellent flexibility and deformability and thus are suitable for the preparation of wearable display fabrics. In order to further address the challenges in the preparation of luminescent fibers, coating luminescent materials on yarns using conjugated electrostatic spinning technology was explored.

Method Polyvinylidene fluoride (PVDF) spinning solution was prepared by using a solvent system of N,N-dimethylformamide and acetone. The spinning solution mixed with inorganic luminous particles was prepared by adding different mass ratios of luminous particles into polyvinylidene fluoride spinning solution. Conductive silver-plated polyamide was used as the core yarn and PVDF/ZnS:Cu2+ functional layer was wrapped on silver-plated polyamide using the electrostatic spinning core yarn technology as the skin layer with a micro-nano fiber yarn machine. The properties of electroluminescent yarn were tested and characterized, and the influence of different mass ratio of luminous particles on spinnability and properties of electroluminescent yarns was discussed.

Results The inorganic luminescent particles were well entangled on the surface of silver-plated polyamide on electroluminescent yarns with six mass ratios. The average diameters of the polyvinylidene fluoride micro- nanofibers for the six mass ratio yarns (1:1,1:1.5,1:2,1:3,1:4,1:5) were 0.51, 0.50, 0.67, 0.42, 0.41, 0.61 μm, respectively. The average diameter of the ZnS:Cu2+ luminous particles was 20.07 μm. The entangled luminous particles on the yarn increased with increasing mass ratio of luminous particles. The fluorescence microscope images showed that the inorganic luminous particles were uniformly distributed on the yarns, and the average fluorescence intensities of the yarns with six different luminous particle mass ratios of 1:1, 1:1.5, 1:2, 1:3, 1:4 and 1:5 were 108.372, 117.935, 137.347, 139.865, 148.301, 147.013, respectively. The FT-IR analysis revealed no shift or change in the peaks after addition of luminous particles, and the β-phase content of the six core yarns was 81.11%, 77.73%, 72.59%, 63.87%, 58.27%, and 74.04%, respectively. The enthalpies of fusion of the six core yarns were 23.53, 13.92, 10.18, 6.22, 3.45 and 5.19 J/g. Mechanical tests showed that the breaking strengths of the PVDF/silver-plated polyamide core yarns and the six PVDF/ZnS:Cu2+/silver-plated polyamide core yarns were 7.318、11.075、11.891、13.959、15.324、16.718、12.584 MPa, respectively, and the elongation at break was 54.474%, 49.660%, 49.112%, 48.769%, 48.223%, 46.588%, and 48.278%, respectively. The bending stiffness of the six yarns were 0.001, 0.011, 0.009, 0.024, 0.026 and 0.001 cN·cm2, and the bending hysteresis moment was 0.003,0.012,0.016,0.026,0.026,0.003 cN·cm. The luminous intensities of the six yarns were 0.79, 1.88, 2.36, 2.67, 3.30, and 2.36 cd/m2, respectively, with less than 10% variation in 4 h. CIE color coordinates of luminescent yarns were (0.184, 0.359), (0.181, 0.357), (0.184, 0.382), (0.185, 0.393), (0.188, 0.394), and (0.181, 0.383), respectively. The PVDF/ZnS:Cu2+/silver-plated polyamide core yarns could achieve multiple and up to 26 cm long luminescent displays.

Conclusion PVDF/ZnS:Cu2+/silver-plated polyamide electroluminescent yarn was successfully prepared by one-step electrostatic spinning of core-spun yarn. As the mass ratio of ZnS:Cu2+ increased, the luminous particles coated on the core-spun yarn was increased which were uniformly coated on the core-spun yarn, and the ZnS:Cu2+ luminous particles were coated on the silver-plated polyamide by the physical entanglement of the PVDF micro-nano fibers. At the mass ratio of PVDF to ZnS:Cu2+ of 1:4, the maximum number of luminous particles was encapsulated in the core yarn, which reached the encapsulation threshold of the electrostatically spun PVDF/ ZnS:Cu2+ system. PVDF/ZnS:Cu2+/silver-plated polyamide electroluminescent yarns have good flexibility and weavability, and they can be be applied in dark, dim daylight and non-direct light scenes. Multiple and long electroluminescent yarns can be excited. PVDF/ZnS:Cu2+/silver-plated polyamide electroluminescent yarns have good application prospects in preparing wearable electronic displays.

Key words: electrospinning, polyvinylidene fluoride, silver-plated polyamide, core-spun yarn, electroluminescence property, flexible electronic display device, intelligent textile

中图分类号: 

  • TQ342.89

图1

不同放大倍数下不同PVDF与ZnS:Cu2+质量比的PVDF/ZnS:Cu2+/镀银锦纶包芯纱的SEM照片"

图2

不同PVDF与ZnS:Cu2+质量比的PVDF纤维的直径频数分布图"

图3

不同PVDF与ZnS:Cu2+质量比的PVDF/ZnS:Cu2+/镀银锦纶包芯纱的荧光显微镜照片"

图4

不同PVDF与ZnS:Cu2+质量比的PVDF/ZnS:Cu2+/镀银锦纶包芯纱的红外光谱图"

图5

ZnS:Cu2+发光颗粒与不同PVDF与ZnS:Cu2+质量比的PVDF/ZnS:Cu2+/镀银锦纶包芯纱的DSC曲线"

图6

不同PVDF与ZnS:Cu2+质量比的PVDF/ZnS:Cu2+/镀银锦纶包芯纱的力学性能"

图7

不同PVDF与ZnS:Cu2+质量比的PVDF/ZnS:Cu2+/镀银锦纶包芯纱的刚柔性"

图8

不同放大倍数下不同材料摩擦后的PVDF/ZnS:Cu2+/镀银锦纶包芯纱表面形貌"

图9

不同PVDF与ZnS:Cu2+质量比的PVDF/ZnS:Cu2+/镀银锦纶包芯纱的发光性能"

图10

PVDF/ZnS:Cu2+/镀银锦纶包芯纱的发光显示图"

[20] 杨宇晨, 覃小红, 俞建勇. 静电纺纳米纤维功能性纱线的研究进展[J]. 纺织学报, 2021, 42(1): 1-9.
YANG Yuchen, QIN Xiaohong, YU Jianyong. Research progress of transforming electrospun nanofibers into functional yarns[J]. Journal of Textile Research, 2021, 42(1): 1-9.
[21] ZHANG D, ZHANG X, LI X, et al. Enhanced piezoelectric performance of PVDF/BiCl3/ZnO nanofiber-based piezoelectric nanogenerator[J]. European Polymer Journal, 2022. DOI:10.1016/j.eurpolymj.2021.110956.
[1] BIWA G, AOYAGI A, DOI M, et al. Technologies for the crystal LED display system[J]. Journal of the Society for Information Display, 2021, 29(6): 435-445.
[2] LEE S M, KWON J H, KWON S, et al. A Review of flexible OLEDs toward highly durable unusual displays[J]. IEEE Transactions on Electron Devices, 2017, 64(5): 1922-1931.
[3] CHAN I P, SEONG M, KIM M A, et al. World's first large size 77-inch transparent flexible OLED display[J]. Journal of the Society for Information Display, 2018, 26(5): 287-295.
[4] ZHU H, SHIN E, LIU A, et al. Printable semiconductors for backplane TFTS of flexible OLED displays[J]. Advanced Functional Materials, 2019. DOI:10.1002/adfm.201904588.
[5] 施翔, 王臻, 彭慧胜. 织物显示器件的研究进展[J]. 纺织学报, 2023, 44(1): 21-29.
SHI Xiang, WANG Zhen, PENG Huisheng. Research progress in display units fabricated from textiles[J]. Journal of Textile Research, 2023, 44(1): 21-29.
[6] DING W, SUN J, CHEN G, et al. Stretchable multi-luminescent fibers with AIEgens[J]. Journal of Materials Chemistry C, 2019, 7: 10769-10776.
[7] CHOI S, KWON S, KIM H, et al. Highly flexible and efficient fabric-based organic light-emitting devices for clothing-shaped wearable displays[J]. Scientific Reports, 2017. DOI: 10.1038/s41598-017-06733-8.
[8] JAYATHILAKA W, CHINNAPPAN A, TEY J N, et al. Alternative current electroluminescence and flexible light emitting devices[J]. Journal of Materials Chemistry C, 2019(7):5553-5572.
[9] 王霁龙, 刘岩, 景媛媛, 等. 纤维基可穿戴电子设备的研究进展[J]. 纺织学报, 2020, 41(12): 157-165.
WANG Jilong, LIU Yan, JING Yuanyuan, et al. Advances in fiber-based wearable electronic devices[J]. Journal of Textile Research, 2020, 41(12): 157-165.
[10] YIN D, CHEN Z Y, JIANG N R, et al. Highly transparent and flexible fabric-based organic light emitting devices for unnoticeable wearable displays[J]. Organic Electronics, 2020, 76(1): 105494-105494.
[11] KIM W, KWON S, HAN Y C, et al. Reliable actual fabric-based organic light-emitting diodes: toward a wearable display[J]. Advanced Electronic Materials, 2016. DOI:10.1002/aelm.201600220.
[12] LIANG G, YI M, HU H, et al. Coaxial-structured weavable and wearable electroluminescent fibers[J]. Advanced Electronic Materials, 2017. DOI:10.1002/aelm.201700401.
[13] KWON S, HWANG Y H, NAM M, et al. Recent progress of fiber shaped lighting devices for smart display applications: a fibertronic perspective[J]. Advanced Materials, 2020. DOI:10.1002/adma.201903488.
[14] HWANG Y H, KWON S, SHIN J B, et al. Bright-multicolor,highly efficient, and addressable phosphorescent organic light-emitting fibers: toward wearable textile information displays[J]. Advanced Functional Materials, 2021. DOI:10.1002/adfm.202009336.
[15] PARK H J, KIM S M, LEE J H, et al. Self-powered motion-driven triboelectric electroluminescence textile[J]. ACS Applied Materials & Interfaces, 2019, 11: 5200-5207.
[16] ZHANG Z, CUI L, SHI X, et al. Textile display for electronic and brain-interfaced communications[J]. Advanced Materials, 2018. DOI:10.1002/adma.201800323.
[17] SHI X, ZUO Y, ZHAI P, et al. Large-area display textiles integrated with functional systems[J]. Nature, 2021, 591: 240-245.
[18] LI P, WANG Y, HE X, et al. Wearable and interactive multicolored photochromic fiber display[J]. Light: Science & Applications, 2024. DOI:10.1038/s41377-024-01383-8.
[19] HEO J S, EOM J, KIM Y H, et al. Recent progress of textile-based wearable electronics: a comprehensive review of materials, devices, and applications[J]. Small, 2018. DOI: 10.1002/smll.201703034.
[1] 詹克静, 杨鑫, 张应龙, 张昕, 潘志娟. 自凝聚丝素蛋白微纳米纤维膜的制备及其力学增强[J]. 纺织学报, 2025, 46(02): 10-19.
[2] 范梦晶, 岳欣琰, 邵剑波, 陈雨, 洪剑寒, 韩潇. 基于静电纺纤维包芯纱的电容式扭转传感器构建及其传感性能[J]. 纺织学报, 2025, 46(02): 106-112.
[3] 赵超, 金欣, 王闻宇, 朱正涛. 自充电超级电容器用聚丙烯腈纳米纤维隔膜的制备及其性能[J]. 纺织学报, 2025, 46(02): 20-25.
[4] 朱雪, 钱鑫, 郝梦圆, 张永刚. MXene/碳纳米纤维膜的静电纺丝-电泳沉积复合工艺制备及其电磁屏蔽性能[J]. 纺织学报, 2025, 46(01): 1-8.
[5] 张曼, 权英, 冯宇, 李甫, 张爱琴, 刘淑强. 纺织基可穿戴柔性应变传感器的研究进展[J]. 纺织学报, 2024, 45(12): 225-233.
[6] 王雅文, 刘娜, 王元非, 吴桐. 静电纺纳米纤维纱线及其对细胞迁移和血管化的调控[J]. 纺织学报, 2024, 45(12): 25-32.
[7] 卢海龙, 于影, 左雨欣, 王浩然, 陈洪立, 汝欣. 取向增强抗CO2腐蚀纤维薄膜的制备及其性能[J]. 纺织学报, 2024, 45(12): 33-40.
[8] 雷福旺, 冯其, 侯奥菡, 赵振鸿, 谭佳兆, 赵景, 王先锋. 聚偏氟乙烯-聚丙烯腈/SiO2单向导湿纤维膜的制备及其性能[J]. 纺织学报, 2024, 45(12): 1-8.
[9] 刘霞, 吴改红, 闫子豪, 王彩柳. 智能相变调温聚乳酸纤维膜的制备及其性能[J]. 纺织学报, 2024, 45(12): 18-24.
[10] 缪璐璐, 孟小奕, 董正梅, 彭倩, 何林伟, 邹专勇. 热处理工艺对喷气涡流纺低熔点涤纶长丝包芯纱力学性能的影响[J]. 纺织学报, 2024, 45(11): 73-79.
[11] 刘健, 王程皓, 董守骏, 刘泳汝. 半封闭自由表面式静电纺丝喷头设计与优化[J]. 纺织学报, 2024, 45(11): 215-225.
[12] 王宇航, 谭晶, 李好义, 徐锦龙, 杨卫民. 纳米纤维纱线静电纺制备技术研究进展[J]. 纺织学报, 2024, 45(11): 235-243.
[13] 刘延波, 高鑫羽, 郝铭, 胡晓东, 杨波. 基于光热改性的复合纤维毡及其在高黏度油吸附中的应用[J]. 纺织学报, 2024, 45(11): 55-64.
[14] 李韩, 王海霞, 张旭, 刘丽萍, 刘小琨. 基于聚乙烯醇缩丁醛/聚乙二醇的同轴纳米纤维膜储热织物制备及其热管理性能[J]. 纺织学报, 2024, 45(11): 37-45.
[15] 刘允璞, 刘威, 王黎明, 覃小红. 静电纺三维纳米纤维材料的制备方法与应用进展[J]. 纺织学报, 2024, 45(11): 226-234.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!