纺织学报 ›› 2025, Vol. 46 ›› Issue (01): 238-247.doi: 10.13475/j.fzxb.20240103202

• 综合述评 • 上一篇    下一篇

防爆服装冲击防护性能测评技术研究进展

钱江瑞1, 刘文武2, 李俊1,3, 方以群2,4,5, 徐佳骏2()   

  1. 1.东华大学 服装与艺术设计学院, 上海 200051
    2.海军军医大学(第二军医大学)海军特色医学中心潜水与高气压医学研究室, 上海 200433
    3.现代服装设计与技术教育部重点实验室, 上海 200051
    4.免疫与炎症国家重点实验室, 上海 200433
    5.全军航海医学保障重点实验室, 上海 200433
  • 收稿日期:2024-01-17 修回日期:2024-05-21 出版日期:2025-01-15 发布日期:2025-01-15
  • 通讯作者: 徐佳骏(1981—),男,副研究员,博士。主要研究方向为潜水与高气压医学。E-mail:xujiajun920@163.com
  • 作者简介:钱江瑞(1994—),女,博士生。主要研究方向为功能与防护服装。
  • 基金资助:
    国防应用推进项目(20AH0103);海军军医大学强海创新托举团队项目(24TPSL0101);海军特色医学中心卓优人才计划项目(21TPZY0101)

Research progress in evaluation methods for impact protection performance of bomb suits

QIAN Jiangrui1, LIU Wenwu2, LI Jun1,3, FANG Yiqun2,4,5, XU Jiajun2()   

  1. 1. College of Fashion and Design, Donghua University, Shanghai 200051, China
    2. Department of Diving and HyperbaricMedical Research, Naval Medical Center, Naval Medical University (Second Military Medical University), Shanghai 200433,China
    3. Key Laboratory of Clothing Design and Technology, Ministry of Education, Shanghai 200051, China
    4. National Key Laboratory of Immunology and Inflammation, Shanghai 200433, China
    5. Military Key Laboratory of Naval Medical Support, Shanghai 200433, China
  • Received:2024-01-17 Revised:2024-05-21 Published:2025-01-15 Online:2025-01-15

摘要:

为提升防爆服装冲击防护性能评估的准确性,综述了近些年国内外关于服装冲击防护性能测评技术及方法的研究现状。在明确现役防爆服装构成及其冲击防护性能评估内容的基础上,分析了当前爆炸实验、等效载荷实验、数值仿真3类测评方法的特点与不足;从测试方法的差异因素和局限2个角度,分析了不同测试条件、测试对象设置对防爆服装冲击防护性能测评结果的影响;对比总结了相关表征及评价指标的应用范围、优缺点。最后指出在未来的研究中,应全面准确地模拟真实爆炸冲击载荷环境、考虑人体真实着装防护状态,并构建完善的冲击防护性能评价体系,以提高防爆服装冲击防护性能测评的准确性。

关键词: 防爆服, 冲击载荷, 防护性能, 力学响应, 冲击防护性能评价

Abstract:

Significance Bomb suits offer the utmost personal protection in explosive impact situations, making it crucial to assess effectively their impact protection performance for public safety. This paper firstly clarifies the composition of bomb suits and delineates their evaluation contents for impact protection performance. Secondly, the application area, advantages and disadvantages of current bomb suits impact protection evaluation methods, characterization and evaluation indexes are reviewed. The effect of experiment conditions and experiment objects on the prediction results of protective performance are analyzed. The aim of this paper is to provide a reference for enhancing the rational effectiveness of evaluation methods for bomb suits' protective performance and improving the accuracy of evaluation results.

Progress The evaluation methods for the impact protection performance of bomb suits include explosion experiment, equivalent load physical experiment and numerical simulation. Explosion experiment is the closest to the complex scene conditions of real explosion. The test objects are materials, dressed-animals, dressed-mechanical manikin, and dressed-bionic manikin. However, this method has ethical limitations and high security risks. The test object of the equivalent load physical experiment is mainly materials, and the shock wave and fragment load are simulated respectively by the equipment. The setting of the testing conditions such as joint load, ambient temperature, ambient humidity is not insufficient. As a result, the impact performance of materials is overestimated and its protection to the human body cannot be directly evaluated. The method of numerical simulation, on the other hand, is non-destructive and highly repeatable. It enables visualization of the transient changes in materials, clothing, and biological bodies under explosion impact, and extraction of a series of characteristic parameters as evaluation indicators. However, current simulation research mainly focuses on the simplified macroscopic model, leading to deviations in prediction results. Additionally, comprehensive full-scales numerical simulation research on bomb suits has not been extensively reported.

Conclusion and prospect Based on existing research, it is a pressing need to enhance the rationality, effectiveness, and accuracy of the evaluation techniques and methods for assessing the impact protection performance of bomb suits. In future research on evaluation techniques for bomb suits, promoting the development of bionic manikin devices can facilitate the acquisition of human injury data and mechanical response parameters in explosion experiments. Considering composite explosion environments, the equivalent load physical experiment is carried out to deepen the study of material protection mechanism, so as to build a prediction model of the relationship between material protective performance and human damage. Furthermore, finite element modeling of explosion environment, bomb suits and human body taking into account the relative relationship between clothing and human body under the state of dressing is necessary to improve the accuracy of clothing protective performance prediction. Conducting a comprehensive evaluation of the impact protection performance of bomb suits through various methods is conducive to improving the accuracy of evaluation results and fully guaranteeing personnel safety.

Key words: bomb suit, impact loading, protection performance, mechanical response, evaluation of impact protection performance

中图分类号: 

  • TS941.73

图1

现役防爆服装构成及各层功能特点"

表1

服装/材料冲击防护性能测试方法"

方法 实验平台 载荷发生方式 冲击载荷 测试指标 缺点
爆炸实验 C4塑料炸药爆炸 冲击波
破片
高温
服装防爆完整性(各组件完整、无滑落等) 危险系数高、数据采集困难、实验精准性差
小型实验装置 三硝基甲苯(TNT)
炸药爆炸
冲击波超压衰减、材料毁伤形变模式、动物死亡率、解剖伤情评估等
等效载荷物理实验 激波管 高压气瓶 冲击波 冲击波超压衰减 仅适用于评估材料对单一冲击载荷的防护能力
霍普金森压杆 气压驱动子弹杆 应力波 峰值应力、平台应力、吸能量、能量吸收效率、透射能
轻气炮 高压气瓶驱动金属弹丸 破片 弹丸运动速度变化量、材料毁伤形变模式
数值仿真 ABAQUS、LS-DYNA、AUTODYN等软件 虚拟载荷 冲击波
破片
冲击载荷参数、材料特征参数、生物力学响应参数 需开展实验验证

表2

材料/服装冲击防护性能评价指标"

指标类型 表征及评价指标 应用范围 优点 缺点
冲击载荷特征参数 超压峰值、压力上升时间等 爆炸实验、激波管实验、数值仿真法 可定量评估材料/服装对冲击载荷的衰减 无法直接表征人体的损伤状况
V50值(达到50%击穿概率时的破片速度)、破片运动速度变化量 轻气炮实验、数值仿真法
防护材料特征参数 最大位移量、失效模式、裂纹扩展长度、损伤面积等 爆炸实验、数值仿真法 通过材料外观形态的变化表征其对冲击载荷的抵御能力 材料对冲击载荷的衰减与其对人体的防护能力不等价,不适合单独使用
吸能量、比吸能、能量吸收效率、平台应力、峰值应力等 等效载荷物理实验、数值仿真法 定量表征材料对冲击载荷的抵御能力
生物体特征参数 损伤等级ASII评分、AIS评分等 爆炸实验 从被防护生物体损伤的角度评估材料/服装的防护效能,是最直观的评价指标 不同损伤评分系统导致防护效能评估结果存在偏差
压力峰值、加速度等 爆炸实验、数值仿真法
[1] 薛琨, 郭泽荣, 唐帆. 爆炸毁伤与防护数值模拟研究[M]. 北京: 北京理工大学出版社, 2020:4-10.
XUE Kun, GUO Zerong, TANG Fan. Numerical studies of the blast effects on the human body and the protections based on the refined human body model[M]. Beijing: Beijing Institute of Technology Press,2020:4-10.
[2] DALE B C, DAVIS M, RAFAELS K, et al. A methodology for assessing blast protection in explosive ordnance disposal bomb suits[J]. International Journal of Occupational Safety and Ergonomics, 2005, 11(4): 347-361.
[3] 张文武, 张丹, 王珊珊, 等. 吸能材料缓冲性能评价方法综述[J]. 包装工程, 2022, 43(5):143-151.
ZHANG Wenwu, ZHANG Dan, WANG Shanshan, et al. Review of evaluation methods for cushioning performance of energy absorbing materials[J]. Package Engineering, 2022, 43(5):143-151.
[4] KANG J, CHEN J, DONG P, et al. Numerical simulation of human torso dynamics under non-penetrating ballistic impact on soft armor[J]. International Journal of Digital Content Technology and Its Applications, 2012, 6(22): 843-850.
[5] 苏正林, 许民辉, 赖西南, 等. 枪弹射击致防弹衣后长白猪远达脑组织损伤特点及其机制[J]. 第三军医大学学报, 2011, 33(19):1995-1999.
SU Zhenglin, XU Minhui, LAI Xinan, et al. Characteristics and mechanism of behind armour blunt trauma in landrace brain[J]. Journal of Army Medical University, 2011, 33(19):1995-1999.
[6] PANZER M B, MYERS B S, BASS C R. Mesh considerations for finite element blast modelling in biomechanics[J]. Computer methods in Biomechanics and Biomedical Engineering, 2013, 16(6): 612-621.
[7] WEAVER A A, STITZEL S M, STITZEL J D. Injury risk prediction from computational simulations of ocular blast loading[J]. Biomechanics and Modeling in Mechanobiology, 2017, 16(2): 463-477.
[8] 王礼立, 杨黎明, 周风华. 强动载荷下结构的柔性防护和刚性防护[J]. 爆炸与冲击, 2009, 29(4):337-344.
WANG Lili, YANG Liming, ZHOU Fenghua. On flexible protection and stiff protection for structure safety under explosive/impact loading[J]. Explosion and Shock Waves, 2009, 29(4):337-344.
[9] 余同希, 朱凌, 许骏. 结构冲击动力学进展(2010—2020)[J]. 爆炸与冲击, 2021, 41(12):4-64.
YU Tongxi, ZHU Lin, XU Jun. Progress in structure impact dynamics during 2010-2020[J]. Explosion and Shock Waves, 2021, 41(12):4-64.
[10] 朱学亮. 聚脲金属复合结构抗冲击防护性能研究[D]. 北京: 北京理工大学,2016:40.
ZHU Xueliang. Study on impact and blast resistance of polyurea metal composite structure[D]. Beijing: Beijing Institute of Technology, 2016:40.
[11] LI Y, CHEN Z, REN X, et al. Experimental and numerical study on damage mode of RC slabs under combined blast and fragment loading[J]. International Journal of Impact Engineering, 2020. DOI:10.1016/j.ijimpeng.2020.103579.
[12] 田力, 朱运华. 冲击波和破片联合作用下RC柱的损伤分析[J]. 建筑科学与工程学报, 2017, 34(2):64-70.
TIAN Li, ZHU Yunhua. Damage analysis of RC column subjected to synergistic effects of blast wave and fragmentation[J]. Journal of Architecture and Civil Engineering, 2017, 34(2):64-70.
[13] 安宣谊, 董永香, 叶坪, 等. 不同加载模式对单层/双层间隔钢靶的毁伤作用[J]. 现代应用物理, 2022, 13(3):177-189.
AN Xuanyi, DONG Yongxiang, YE Ping, et al. Damage effects of different loading modes on single/double-layer spaced steel targets[J]. Modern Application Physics, 2022, 13(3):117-189.
[14] 董秋阳, 宋述稳, 张学民. 基于时间差法破片和冲击波毁伤靶板数值模拟[J]. 机电产品开发与创新, 2016, 29(3):69-71.
DONG Qiuyang, SONG Shuwen, ZHANG Xuemin. Numerical simulation of target under projectile and shock wave based on time diffference[J]. Development & Innovation of Machinery & Electrical Products, 2016, 29(3):69-71.
[15] 周锦地. 基于多尺度方法的碳纤维复合材料温度环境下力学行为研究[D]. 哈尔滨: 哈尔滨工业大学,2022:16-19.
ZHOU Jindi. Study of mechanical behavior of carbon fiber composites under temperature environment based on multi-scale approach[D]. Harbin:Harbin Institute of Technology,2022:16-19.
[16] 张亚如. 含水率对芳纶纤维及其针刺非织造布性能的影响[D]. 上海: 东华大学,2021:15-24.
ZHANG Yaru. The influence of moisture content on the properties of aramid fiber and its needle-punched nonwoven fabric[D]. Shanghai: Donghua University,2021:15-24.
[17] PAN Z, ZHANG Q, GU B, et al. Effect of temperature and strain rate on biaxial warp-knitted composite[J]. Journal of Reinforced Plastics and Composites 2016, 35(4): 295-304.
[18] 刘新东, 郝际平. 连续介质损伤力学[M]. 北京: 国防工业出版社,2011:126-128.
LIU Xindong, HAO Jiping. Continue damage mech-anics[M]. Beijing: National Defense Industry Press,2011:126-128.
[19] 胡燕琪. 高速冲击下三维机织复合材料宏细观建模方法研究[D]. 杭州: 浙江大学,2021:77-81.
HU Yanqi. Study on macro-meso modeling method of 3D woven composites under high speed impact[D]. Hangzhou: Zhejiang University, 2021:77-81.
[20] BAR-KOCHBA E, IWASKIW A S, DUNN J M, et al. The dynamic response of human lungs due to underwater shock wave exposure[J]. PIoS, 2024. DOI:10.1371/journal.pone.0303325.
[21] ROBERTS J C, MERKLE A C, BIERMANN P J, et al. Computational and experimental models of the human torso for non-penetrating ballistic impact[J]. Journal of Biomechanics, 2007, 40(1): 125-136.
[22] 唐刘建, 温垚珂, 徐诚, 等. 手枪弹侵彻软防护人体胸部靶标的数值模拟[J]. 兵器装备工程学报, 2018, 39(1):106-110.
TANG Liujian, WEN Yaoke, XU Cheng, et al. Numerical simulation of pistol bullets penetrating into soft bulletproof vest covered human chest target[J]. Journal of Ordnance Equipment Engineering, 2018, 39(1): 106-110.
[23] 黄旭. 增加缓冲层的人防工程成层式防护结构抗冲击性能研究[D]. 南京: 东南大学,2019:10-13.
HUANG Xu. Study on impact resistance of layered protection structure for civil air defense engineering with buffer layer[D]. Nanjing: Southeast University,2019:10-13.
[24] NICOTRA M, MONCALERO M, MESSORI M, et al. Thermo-mechanical and impact properties of polymeric foams used for snow sports protective equipment[J]. Procedia Engineering, 2014, 72: 678-683.
[25] 王凌青. 不同弹体结构步枪弹致防弹衣后钝性伤特点及其生物力学机制[D]. 重庆: 第三军医大学,2013:54-59.
WANG Lingqing. The behind armor blunt trauma and biomechanical characteristics after different rifle bullets impacting the swine's armor vest[D]. Chongqing: Army Medical University,2013:54-59.
[26] THOM C. Soft materials under air blast loading and their effect on primary blast injury[D]. Waterloo: University of Waterloo, 2009:193-197.
[27] 许鲁. SiO2气凝胶混杂芳纶非织布抗冲击波性能的研究[D]. 杭州: 浙江理工大学,2017:35-37.
XU Lu. Study on shock-resistant properties of aramid nonwovens aerogels with SiO2[D]. Hangzhou: Zhejiang Sci-Tech University, 2017:35-37.
[28] 张立勇. 开孔泡沫铝孔结构及力学性能研究[D]. 合肥: 合肥工业大学,2004:52-53.
ZHANG Liyong. Study on pore structure and mechanical behaviors of porous aluminum[D]. Hefei: Hefei University of Technology, 2004:52-53.
[29] HAN Y H, LEE Y W. Optimization of bumper structure for pedestrian lower leg impact[R]. USA: SAE International Publisher, 2002:1-30.
[30] 邱婧, 刘利, 吴国栋, 等. 国产高性能纤维机织布防护性能测试与评价[J]. 合成纤维, 2022, 51(11):15-17.
QIU Jing, LIU Li, WU Guodong, et al. Test and evaluation of performance of domestic high performance fiver woven fabrics[J]. Synthetic Fiber in China, 2022, 51(11):15-17.
[31] WEIL Y A, MOSHEIFF R, LIEBERGALL M. Blast and penetrating fragment injuries to the extremities[J]. JAAOS-Journal of the American Academy of Orthopaedic Surgeons, 2006, 14(10): 136-139.
[32] 余庆波, 王海福, 金学科, 等. 缓冲材料对活性破片战斗部爆炸驱动影响分析[J]. 北京理工大学学报, 2013, 33(2):121-126.
YU Qingbo, WANG Haifu, JIN Xueke, et al. Influence of buffer material on explosive driven of reactive fragment warhead[J]. Transactions of Beijing Institute of Technology, 2013, 33(2):121-126.
[33] BRESCIANI L M, MANES A, RUGGIERO A, et al. Experimental tests and numerical modelling of ballistic impacts against Kevlar 29 plain-woven fabrics with an epoxy matrix: macro-homogeneous and meso-heterogeneous approaches[J]. Composites Part B: Engineering, 2016, 88: 114-130.
[34] 王小伟, 何金迎, 祖旭东, 等. 聚脲弹性体复合夹层结构的防爆性能[J]. 工程塑料应用, 2017, 45(5):63-68.
WANG Xiaowei, HE Jinying, ZU Xudong, et al. Antidetonation properties on composite sandwich structure with polyurea elastomer[J]. Engineering Plastics Application, 2017, 45(5):63-68.
[35] ZHANG D, YU R, YAO M, et al. Numerical study on the performance of RC slab with protective aluminum foam cladding under near-field explosion[C]// IOP Conference Series: Earth and Environmental Science. United Kingdom: IOP Publishing, 2019, 267(3):1-7.
[36] 艾冬杰. 水下接触及非接触近场爆炸载荷下泡沫铝夹芯板结构失效机理与吸能特性研究[D]. 武汉: 华中科技大学, 2017:12-22.
AI Dongjie. Research on failure mechanism and energy absorption characteristics of sandwich panels with aluminum foam core under contact and non-contact near-field water blast loading[D]. Wuhan: Huazhong University of Science and Technology, 2017:12-22.
[37] XU K. A numerical study on the progressive failure of 3D four-directional braided composites[J]. Advances in Materials Science and Engineering, 2013(16):1-14.
[38] TAN H, LIU L, GUAN Y, et al. Investigation of three-dimensional braided composites subjected to steel projectile impact: automatically modelling mesoscale finite element model[J]. Composite Structures, 2019(209): 317-327.
[39] LANGDON G S, NURICK G N, YAHYA M Y, et al. The response of honeycomb core sandwich panels, with aluminum and composite face sheets, to blast loading[J]. Journal of Sandwich Structures & Materials, 2010, 12(6): 733-754.
[40] LANGDON G S, CANTWELL W J, GUAN Z W, et al. The response of polymeric composite structures to air-blast loading: a state-of-the-art[J]. International Materials Reviews, 2014, 59(3): 159-177.
[41] ZHANG R, HUANG W, LYU P, et al. Polyurea for blast and impact protection: a review[J]. Polymers, 2022. DOI:10.3390/polym14132670.
[42] 高兴忠. 三维编织碳纤维/环氧树脂复合材料多次冲击压缩破坏机理及其编织角效应[D]. 上海: 东华大学,2019:78-80.
GAO Xingzhong. Damage mechanisms and braiding angle effects of 3-D braided carbon fiber/epoxy resin composite under multiple impact compressions[D]. Shanghai: Donghua University, 2019:78-80.
[43] 王壮壮. 冲击载荷下脆性空心颗粒复合材料力学特性研究[D]. 太原: 中北大学, 2020:19-21.
WANG Zhuangzhuang. Study on mechanical properties of brittle hollow particle composites under impact load[D]. Taiyuan: North University of China, 2020:19-21.
[44] GAO R, LI D, DONG L, et al. Numerical analysis of the mechanical properties of 3D random Voronoi structures with negative Poisson's ratio[J]. Physical Status Solidi B, 2019, DOI:10.1002/pssb.201800539.
[45] HOU J, LI D, DONG L. Mechanical behaviors of hierarchical cellular structures with negative Poisson's ratio[J]. Journal of Materials Science, 2018,53: 10209-10216.
[46] 常白雪, 郑志军, 赵凯, 等. 梯度多胞材料耐撞性设计的简化模型和渐近解[J]. 中国科学:物理学力学天文学, 2018, 48(9):233-241.
CHANG Baixue, ZHENG Zhijun, ZHAO Kai, et al. A simplified model and its asymptotic solution for the crash worthiness design of graded cellular material[J]. Sci Sin: Phys Mech Astron, 2018, 48(9): 233-241.
[47] WANG X, ZHENG Z, YU J. Crashworthiness design of density-graded cellular metals[J]. Theoretical and Applied Mechanics Letters, 2013. DOI:10.1063/2.1303101.
[48] 狄凤桐, 狄宁, 王正国, 等. 内蒙高原实验性爆炸伤某些病理生化改变与防护效果观察[J]. 解放军预防医学杂志, 2003(3):170-172.
DI Fengtong, DI Ning, WANG Zhengguo, et al. Morphological and biochemical changes following experimental explosive injury in inner mongolia highland and the protective effect against explosion[J]. Journal of Preventive Medicine of Chinese People's Liberation Army, 2003(3):170-172.
[49] 薛钰奇, 张华才, 文大林, 等. 模拟实爆条件下新型聚脲类材料对肺冲击伤的防护效应研究[J]. 第三军医大学学报, 2020, 42(19):1875-1881.
XUE Yuqi, ZHANG Huacai, WEN Dalin, et al. Bioprotective effects of novel polyurea materials on lung blast injury after simulated open-field explosion[J]. Journal of Army Medical University, 2020, 42(19):1875-1881.
[50] YELVERTON J T. Pathology scoring system for blast injuries[J]. Journal of Trauma and Acute Care Surgery, 1996, 40(3S): 111-115.
[51] GENNARELLI T A, WODZIN E. 简明损伤定级标准2005[M]. 重庆: 重庆出版社,2005:212.
GENNARELLI T A, WODZIN E. The abbreviated injury scale 2005[M]. Chongqing: Chongqing Publishing House, 2005:212.
[52] 康建毅, 段朝霞, 张洁元, 等. 不同创伤评分系统在爆炸伤伤情评估中的比较[J]. 第三军医大学学报, 2019, 41(15):1403-1406.
KANG Jianyi, DUAN Zhaoxia, ZHANG Jieyuan, et al. Application of different trauma scoring systems for evaluation of severity of blast injury[J]. Journal of army medical university, 2019, 41(15):1403-1406.
[53] MATOS H D S, CHU T, CASPER B M, et al. Human lung simulants subjected to underwater explosions: an experimental investigation[J]. Journal of the Mechanical Behavior of Biomedical Materials, 2023. DOI:10.1016/j.jmbbm.2023.106035.
[54] 李剑. 爆炸与防护[M]. 北京: 中国水利水电出版社,2014:265-266.
LI Jian. Explosion and protection[M]. Beijing: China Water and Power Press,2014:265-266.
[55] 张文杰, 王刚. 枪弹钝击防弹衣后人体胸骨的非贯穿性损伤研究[J]. 机械设计与制造工程, 2018, 47(2):105-108.
ZHANG Wenjie, WANG Gang. The study on the non-penetrating injury of the human breast bone after the blunt impact of the bullet[J]. Mechanical Design and Manufacturing Engineering, 2018, 47(2):105-108.
[56] 张俊斌, 黄雪鹰, 李子轩, 等. 手枪弹对人体胸部模拟靶标的侵彻机理研究[J]. 兵器装备工程学报, 2022, 43(11):25-31.
ZHANG Junbin, HUANG Xueying, LI Zixuan, et al. Research on pistol bullet penetration into human chest simulated target[J]. Journal of Ordnance Equipment Engineering, 2022, 43(11):25-31.
[57] 胡裕鹏, 孙玥, 顾冰菲, 等. 人体穿着防弹服的有限元模型构建与仿真[J]. 纺织高校基础科学学报, 2023, 36(2):64-70.
HU Yupeng, SUN Yue, GU Bingfei, et al. Finite element modeling and simulation of body wearing armor vest[J]. Basic Sciences Journal of Textile University, 2023, 36(2): 64-70.
[58] 温垚珂, 唐刘建, 徐诚, 等.一种明胶仿生人体假人的制作方法:201711148311.2[P].2018-05-08.
WEN Yaoke, TANG Liujian, XU Cheng, et al. A methods of making gelatin bionic human dummy: 201711148311.2[P]. 2018-05-08.
[59] 唐刘建, 温垚珂, 薛本源, 等. 手枪弹侵彻有防护仿生人体躯干靶标试验研究[J]. 振动与冲击, 2019, 38(4):245-249.
TANG Liujian, WEN Yaoke, XUE Benyuan, et al. Pistol bullet impact soft body armor covered bionic human torso[J]. Journal of Vibration and Shock, 2019, 38(4): 245-249.
[60] DONG P, CHEN J, ZHANG Q, et al. Finite element analysis on mechanical responses of human torso with body armor to non penetrating ballistic impact[J]. Journal of Medical Biomechanics, 2012, 27(3): 270-275.
[1] 杨光, 杨小兵, 栗丽, 姚之凤, 周川, 张明明. 新修定的化学防护服国家标准解析[J]. 纺织学报, 2024, 45(03): 163-168.
[2] 陈萌, 何瑞东, 程怡昕, 李纪伟, 宁新, 王娜. 磁控溅射银/锌改性聚苯乙烯/聚偏氟乙烯复合纤维膜的制备及其性能[J]. 纺织学报, 2023, 44(03): 19-27.
[3] 栗辰飞, 刘元军, 赵晓明. 生化防护服的研究进展[J]. 纺织学报, 2022, 43(07): 207-216.
[4] 朱晓荣, 何佳臻, 王敏. 相变材料在热防护服上的应用研究进展[J]. 纺织学报, 2022, 43(04): 194-202.
[5] 张文欢, 李俊. 低热辐射环境中消防服系统内热传递机制的研究进展[J]. 纺织学报, 2021, 42(10): 190-198.
[6] 王琦, 田苗, 苏云, 李俊, 余梦凡, 许霄. 开放/封闭空气层对阻燃织物热防护性能的影响[J]. 纺织学报, 2020, 41(12): 54-58.
[7] 孟晶, 高珊, 卢业虎. 石墨烯气凝胶复合防火面料防护性能的影响因素[J]. 纺织学报, 2020, 41(11): 116-121.
[8] 翟丽娜, 李俊, 杨允出. 热防护服装测评用传感器的发展及其研究现状[J]. 纺织学报, 2020, 41(10): 188-196.
[9] 何佳臻, 薛萧昱, 王敏, 李俊. 基于最大衰减因子模型的服装热防护性能预测[J]. 纺织学报, 2020, 41(06): 112-117.
[10] 吕凯敏, 戴宏钦. 化学防护服的研究进展[J]. 纺织学报, 2020, 41(05): 191-196.
[11] 王雅娴, 李艳梅. 吸能缓冲防护服装的研究进展[J]. 纺织学报, 2020, 41(05): 184-190.
[12] 高珊, 卢业虎, 张德锁, 吴雷, 王来力. 石墨烯气凝胶复合防火织物的热防护性能[J]. 纺织学报, 2020, 41(04): 117-122.
[13] 隋智慧, 伞景龙, 王旭, 常江, 吴学栋, 祖彬. 纳米ZnO/有机氟硅改性聚丙烯酸酯乳液的合成及应用[J]. 纺织学报, 2020, 41(04): 84-90.
[14] 邱浩, 苏云, 王云仪. 蒸汽暴露条件对织物热防护性能的影响[J]. 纺织学报, 2020, 41(01): 118-123.
[15] 侯玉莹, 李小辉. 防火服用蜂窝隔热层的热蓄积性能测评[J]. 纺织学报, 2019, 40(12): 109-113.
Viewed
Full text
98
HTML PDF
Just accepted Online first Issue Just accepted Online first Issue
0 0 56 0 0 42

  From Others local
  Times 18 80
  Rate 18% 82%

Abstract
88
Just accepted Online first Issue
0 0 88
  From Others local
  Times 52 36
  Rate 59% 41%

Cited

Web of Science  Crossref   ScienceDirect  Search for Citations in Google Scholar >>
 
This page requires you have already subscribed to WoS.
  Shared   
  Discussed   
No Suggested Reading articles found!