纺织学报 ›› 2025, Vol. 46 ›› Issue (01): 138-147.doi: 10.13475/j.fzxb.20240104701
李万新1, 舒大武1,2(), 安芳芳1, 韩博1, 任支刚2, 单巨川1
LI Wanxin1, SHU Dawu1,2(), AN Fangfang1, HAN Bo1, REN Zhigang2, SHAN Juchuan1
摘要: 为提高染色废水处理效率,降低废水处理过程中的过渡金属用量,利用二维纳米材料MXene(Ti3C2)还原微量Fe3+,实现过硫酸钠(SPS)快速活化降解C.I.活性黑5(RB5)废水。以0.05 g/L RB5溶液为研究对象,降解率为评价指标,探究SPS质量浓度、FeCl3浓度、MXene质量浓度、初始pH值和RB5降解率的关系。通过自由基猝灭实验,探究染料降解过程中自由基的贡献率。结果表明:RB5模拟染液使用2 g/L SPS、0.06 mmol/L FeCl3和60 mg/L MXene混合液在25 ℃处理30 min时,降解率高达99.3%;RB5降解符合准一级反应动力学,中性条件下,利用Fe3+/SPS/MXene体系处理模拟染液时,RB5的降解速率为0.15 min-1,较不含MXene体系处理的0.000 8 min-1提高187倍;使用MXene后,MXene表面附着颗粒结构,生成大量Ti—O,使Ti元素含量降低,同时引入Fe元素,使其结晶度降低1.13%;利用MXene可触发Fe3+/Fe2+循环,加速活化SPS降解染料,·OH是降解染料的主体;使用Fe3+/SPS/MXene处理染色废水时,NaCl等无机盐会显著改变脱色速率,但几乎不影响最终脱色率。
中图分类号:
[1] | 王文磊, 赵连英, 顾学锋. 涤棉针织面料的染整碳排放分析[J]. 印染, 2023, 49(5): 52-54. |
WANG Wenlei, ZHAO Lianying, GU Xuefeng. Analysis of carbon emission from wet processing of polyester/cotton knitted fabrics[J]. China Dyeing & Finishing, 2023, 49(5): 52-54. | |
[2] | 王玉鸽, 王雪燕, 王洁. 助剂对CG催化体系活性染料染色废水脱色的影响[J]. 水处理技术, 2023, 49(11): 49-53. |
WANG Yuge, WANG Xueyan, WANG Jie. Effect of additives on decolorization of CG-catalyzed system reactive dyeing wastewater[J]. Technology of Water Treatment, 2023, 49(11): 49-53. | |
[3] | 刘儒初, 王小军, 杨晶晶. 低尿素依存性活性染料的开发及应用[J]. 印染, 2020, 46(12): 45-49. |
LIU Ruchu, WANG Xiaojun, YANG Jingjing. Development and application of low urea-dependent reactive dyes[J]. China Dyeing & Finishing, 2020, 46(12): 45-49. | |
[4] | 韩博, 王玉霖, 舒大武, 等. 活性染料染色废水的循环染色[J]. 纺织学报, 2023, 44(8): 154-159. |
HAN Bo, WANG Yulin, SHU Dawu, et al. Cyclic dyeing of reactive dye dyeing wastewater[J]. Journal of Textile Research, 2023, 44(8): 154-159. | |
[5] | 常定明. 工业水处理中高级氧化技术的开发和应用[J]. 上海轻工业, 2023 (4): 152-154. |
CHANG Dingming. Development and application of advanced oxidation technology in industrial water treatment[J]. Shanghai Light Industry, 2023 (4): 152-154. | |
[6] | 奚凯, 杨忠林, 孟祥天, 等. 类Fenton氧化技术在废水处理中的应用研究进展[J]. 应用化工, 2020, 49(5): 1297-1303. |
XI Kai, YANG Zhonglin, MENG Xiangtian, et al. Advances in the application of Fenton-like oxidation technology in wastewater treatment[J]. Applied Chemical Industry, 2020, 49(5): 1297-1303. | |
[7] | 詹洪生, 李伟, 董丛健, 等. 溶液pH对高锰酸钾降解四环素动力学、产物和生物毒性的影响[J]. 环境化学, 2024, 43 (9): 1-9. |
ZHAN Hongsheng, LI Wei, DONG Congjian, et al. Effect of solution pH on kinetics, product and biotoxicity of tetracycline degradation by potassium perman-ganate[J]. Environmental Chemistry, 2024, 43(9): 1-9. | |
[8] | ARVANITI O S, IOANNIDI A A, MANTZAVINOS D, et al. Heat-activated persulfate for the degradation of micropollutants in water: a comprehensive review and future perspectives[J]. Journal of Environmental Management, 2022. DOI: 10.1016/j.jenvman.2022.115568. |
[9] | 冯欣蕊, 蒋绍阶, 胡伟, 等. 新型杂化絮凝剂PAC-PDMDAAC对染料废水的脱色光谱分析[J]. 光谱学与光谱分析, 2016, 36(6): 1859-1863. |
FENG Xinrui, JIANG Shaojie, HU Wei, et al. Spectral analysis on the decolorization of dyeing wastewater with PAC-PDMAAAC hybrid flocculant[J]. Spectroscopy and Spectral Analysis, 2016, 36(6): 1859-1863. | |
[10] | SONAWANE S, RAYAROTH M P, LANDGE V K, et al. Thermally activated persulfate-based advanced oxidation processes: recent progress and challenges in mineralization of persistent organic chemicals: a review[J]. Current Opinion in Chemical Engineering, 2022. DOI: 10.1016/j.coche.2022.100839. |
[11] | 周明珠, 仓龙. 过一硫酸盐的化学氧化机理及在有机污染土壤修复中应用研究进展[J]. 土壤, 2022, 54(4): 653-666. |
ZHOU Mingzhu, CANG Long. Progress of chemical oxidation mechanism of peroxymonosulfate and its application in remediation of organic contaminated soil[J]. Soils, 2022, 54(4): 653-666. | |
[12] | 张福宁, 荆国林, 孙征楠, 等. 铁活化过硫酸盐降解水中污染物的研究进展[J]. 现代化工, 2023, 43(8): 74-78. |
ZHANG Funing, JING Guolin, SUN Zhengnan, et al. Research progress on degradation of pollutantas in water by iron activated persulfate[J]. Modern Chemical Industry, 2023, 43(8): 74-78. | |
[13] | 吴光锐, 王德军, 王永剑, 等. 过一硫酸盐的活化及其降解水中有机污染物机理的研究进展[J]. 化工环保, 2018, 38(5): 505-513. |
WU Guangrui, WANG Dejun, WANG Yongjian, et al. Research progresses on activation of peroxymonosulfate and its degradation mechanism to organic pollutants in aqueous solutions[J]. Environmental Protection of Chemical Industry, 2018, 38(5): 505-513. | |
[14] | 鲍梦麒, 庞素艳, 王立宁, 等. 还原剂强化Fe(II)活化过氧化物高级氧化体系研究进展[J]. 当代化工, 2022, 51(4): 914-921,935. |
BAO Mengqi, PANG Suyan, WANG Lining, et al. Research progress in reductant-enhanced Fe(II) activated peroxide advanced oxidation processes[J]. Contemporary Chemical Industry, 2022, 51(4): 914-921,935. | |
[15] | 齐亚兵. 活化过硫酸盐高级氧化法降解抗生素的研究进展[J]. 化工进展, 2022, 41(12): 6627-6643. |
QI Yabing. Research progress on degradation of antibiotics by activated persulfate oxidation[J]. Chemical Industry and Engineering Progress, 2022, 41(12): 6627-6643. | |
[16] | 周宇辉, 林洋仟, 王御豪, 等. 磁性复合材料活化过硫酸盐去除水中双酚A[J]. 中国环境科学, 2024, 44(2): 832-840. |
ZHOU Yuhui, LIN Yangqian, WANG Yuhao, et al. Magnetic sandwich composite activated peroxymonosulfate for bisphenol A removal[J]. China Environmental Science, 2024, 44(2): 832-840. | |
[17] | SONG H, WANG Y, LING Z, et al. Enhanced photocatalytic degradation of perfluorooctanoic acid by Ti3C2 MXene-derived heterojunction photocatalyst: application of intercalation strategy in DESs[J]. Science of The Total Environment, 2020. DOI: 10.1016/j.scitotenv.2020.141009. |
[18] | ALHABEB M, MALESKI K, ANASORI B, et al. Guidelines for synthesis and processing of two-dimensional titanium carbide (Ti3C2Tx MXene)[J]. Chemistry of Materials, 2017, 29: 7633-7644. |
[19] | 张磊, 张进, 闫新龙. 多孔Ni/Co水滑石活化过硫酸盐降解磺胺甲噁唑研究[J]. 工业水处理, 2023. DOI: 10.19965/j.cnki.iwt.2023-0849. |
ZHANG Lei, ZHANG Jin, YAN Xinlong. Synthesis of porous Ni/Co LDHs and its degradation behavior for sulfamethoxazole via peroxymonosulfate activation[J]. Industrial Water Treatment, 2023. DOI: 10.19965/j.cnki.iwt.2023-0849. | |
[20] | 罗海林, 苏健, 金万慧, 等. 新型缫丝成筒技术的工艺优化[J]. 纺织学报, 2023, 44(4): 46-54. |
LUO Hailin, SU Jian, JIN Wanhui, et al. Process optimization of novel silk reeling technique[J]. Journal of Textile Research, 2023, 44(4): 46-54. | |
[21] | DING M, CHEN W, XU H, et al. Synergistic features of superoxide molecule anchoring and charge transfer on two-dimensional Ti3C2Tx MXene for efficient peroxymonosulfate activation[J]. ACS Applied Materials & Interfaces, 2020, 12(8): 9209-9218. |
[22] | XU S, LIU C, JIANG X, et al. Ti3C2 MXene promoted Fe3+/H2O2 Fenton oxidation: comparison of mechanisms under dark and visible light conditions[J]. Journal of Hazardous Materials, 2023. DOI: 2023. 10.1016/j.jhazmat.2022.130450. |
[23] | 程洋, 王栋, 刘汇洋, 等. 声化学微反应器降解亚甲基蓝废水试验研究[J]. 化学工业与工程, 2022, 39(6): 93-100. |
CHENG Yang, WANG Dong, LIU Huiyang, et al. Experimental study on degradation of methylene blue wastewater by sonochemical microreactor[J]. Chemical Industry and Engineering, 2022, 39(6): 93-100. | |
[24] | 南亚林, 张鹏, 范文燕, 等. 负载型二硒化铁催化单过硫酸盐降解多氯联苯的研究[J]. 现代化工, 2022, 42(10): 190-195. |
NAN Yalin, ZHANG Peng, FAN Wenyan, et al. Research on degradation of polychlorinated biphenyls with monopersulfate catalyzed by supported FeSe2[J]. Modern Chemical Industry, 2022, 42(10): 190-195. | |
[25] | 文晓飞, 吴美荣, 翟一澎, 等. 黄铜矿活化过硫酸盐处理丁基黄药废水的研究[J]. 矿冶工程, 2023, 43(3): 61-66. |
WEN Xiaofei, WU Meirong, ZHAI Yipeng, et al. Treatment of butyl xanthate wastewater with chalcopyrite activated persulfate[J]. Mining and Metallurgical Engineering, 2023, 43(3): 61-66. | |
[26] | 张倩, 谢陈飞洋, 仇玥, 等. Fe/污泥基生物炭持久活化过硫酸盐降解酸性橙G[J]. 中国环境科学, 2019, 39(9): 3879-3886. |
ZHANG Qian, XIE Chenfeiyang, QIU Yue, et al. Durable degradation of Orange G using persulfate activated by sludge-derived heterogeneous catalyst[J]. China Environmental Science, 2019, 39(9): 3879-3886. | |
[27] | 汪莎莎, 李延昂, 邓慧婵, 等. 用于电化学执行器的非金属电极材料研究进展[J]. 科学通报, 2024, 69(Z1): 578-595. |
WANG Shasha, LI Yanang, DENG Huichan, et al. Research progress of non-metallic electrode materials for electrochemical actuators[J]. Chinese Science Bulletin, 2024, 69(Z1): 578-595. | |
[28] | 王静, 邓彤, 冯亚萍, 等. 钴基铁酸盐的室温合成和表征[J]. 光谱学与光谱分析, 2005(8): 1366-1370. |
WANG Jing, DENG Tong, FENG Yaping, et al. Synthesis and characteristic of cobalt bearing ferrite particles at room temperature[J]. Spectroscopy and Spectral Analysis, 2005(8): 1366-1370. | |
[29] | YANG Z, YAN Y, YU A, et al. Revisiting the phenanthroline and ferrozine colorimetric methods for quantification of Fe(II) in Fenton reactions[J]. Chemical Engineering Journal, 2020. DOI: 10.1016/j.cej.2019.123592. |
[30] | MA Y, LV X, XIONG D, et al. Catalytic degradation of ranitidine using novel magnetic Ti3C2-based MXene nanosheets modified with nanoscale zero-valent iron particles[J]. Applied Catalysis B: Environmental, 2021. DOI: 10.1016/j.apcatb.2020.119720. |
[31] | LI Zhuoyu, LIU Yulei, HE Peinan, et al. Further understanding the role of hydroxylamine in transformation of reactive species in Fe(II)/peroxydisulfate system[J]. Chemical Engineering Journal, 2021. DOI: 10.1016/j.cej.2021.129464. |
[32] | ZOU J, MA J, CHEN L, et al. Rapid acceleration of ferrous iron/peroxymonosulfate oxidation of organic pollutants by promoting Fe(III)/Fe(II) cycle with hydroxylamine[J]. Environmental Science & Technology, 2013, 47(20): 11685-11691. |
[33] | WANG L, SONG H, YUAN L, et al. Effective removal of anionic Re(VII) by surface-modified Ti2CTx MXene nanocomposites: implications for Tc(VII) seque-stration[J]. Environmental Science & Technology, 2019, 53(7): 3739-3747. |
[34] | SONG H, ZU D, LI C, et al. Ultrafast activation of peroxymonosulfate by reduction of trace Fe3+ with Ti3C2 MXene under neutral and alkaline conditions: reducibility and confinement effect[J]. Chemical Engineering Journal, 2021.DOI:10.1016/j.cej:2021. |
[35] | 贾冬梅, 洪翔宇. 氯化钠对芬顿体系降解印染废水的影响[J]. 应用化工, 2021, 50(11): 2997-2999, 3005. |
JIA Dongmei, HONG Xiangyu. Effects of sodium chloride on degradation of printing and dyeing wastewater by the Fenton oxidation[J]. Applied Chemical Industry, 2021, 50(11): 2997-2999, 3005. | |
[36] | 李亚峰, 刘梦佳, 杜茹男, 等. 无机盐类染整助剂对类Fenton体系处理印染废水的影响[J]. 沈阳建筑大学学报(自然科学版), 2020, 36(2): 370-377. |
LI Yafeng, LIU Mengjia, DU Runan, et al. Effect of inorganic salt dyeing and finishing auxiliaries on the treatment of printing and dyeing wastewater by Fenton-like system[J]. Journal of Shenyang Jianzhu Uni-versity(Natural Science), 2020, 36(2): 370-377. |
[1] | 李逢春, 孙辉, 于斌, 谢有秀, 张德伟. 共价有机框架材料/粘胶水刺非织造布的制备及其染料吸附性能[J]. 纺织学报, 2025, 46(02): 170-179. |
[2] | 崔芳, 张鑫卿, 殷斐, 李大伟, 雷苗苗, 谢志勇. 基于泡沫法给碱的粘胶织物活性红24无尿素印花[J]. 纺织学报, 2025, 46(02): 138-144. |
[3] | 武浩, 周嫦娥, 高振清, 冯嘉禾. 基于还原-氧化体系的活性染料染色棉织物剥色[J]. 纺织学报, 2024, 45(12): 128-136. |
[4] | 关玉, 王冬, 郭一凡, 付少海. MoS2/MXene阻燃气敏棉织物的制备及其性能[J]. 纺织学报, 2024, 45(12): 159-165. |
[5] | 王建, 张蕊, 郑莹莹, 董正梅, 邹专勇. 二维过渡金属碳/氮化合物基柔性纺织压力传感器的研究进展[J]. 纺织学报, 2024, 45(06): 219-226. |
[6] | 宋贝贝, 赵浩阅, 李欣宇, 屈展, 方剑. 载有MXene的钴氮掺杂碳纳米纤维在锂硫电池中的应用[J]. 纺织学报, 2024, 45(04): 24-32. |
[7] | 陈荣轩, 孙辉, 于斌. N-TiO2/聚丙烯复合熔喷非织造材料的制备及其光催化性能[J]. 纺织学报, 2024, 45(03): 137-147. |
[8] | 韩博, 王玉霖, 舒大武, 王涛, 安芳芳, 单巨川. 活性染料染色废水的循环染色[J]. 纺织学报, 2023, 44(08): 151-157. |
[9] | 郭玉秋, 钟毅, 徐红, 毛志平. 拼混活性染料染色多组分定量分析方法[J]. 纺织学报, 2023, 44(07): 141-150. |
[10] | 吴伟, 纪柏林, 毛志平. 活性及分散染料染色新技术[J]. 纺织学报, 2023, 44(05): 1-12. |
[11] | 齐浩彤, 张林森, 侯秀良, 徐荷澜. 废食用油-水无盐体系活性染色棉织物的服用性能[J]. 纺织学报, 2023, 44(03): 126-131. |
[12] | 李港华, 王航, 史宝会, 曲丽君, 田明伟. 柔性电子织物的构筑及其压力传感性能[J]. 纺织学报, 2023, 44(02): 96-102. |
[13] | 王金坤, 刘秀明, 房宽峻, 乔曦冉, 张帅, 刘冬冬. 双乙烯砜基团活性染料染色对棉织物防皱性能的提升[J]. 纺织学报, 2023, 44(02): 207-213. |
[14] | 张帅, 房宽峻, 刘秀明, 乔曦冉. 活性染料结构对彩色聚合物纳米球性能的影响[J]. 纺织学报, 2022, 43(12): 96-101. |
[15] | 张楚丹, 王锐, 王文庆, 刘燕燕, 陈睿. 阳离子改性阻燃涤纶织物的制备及其性能[J]. 纺织学报, 2022, 43(12): 109-117. |
|