纺织学报 ›› 2025, Vol. 46 ›› Issue (01): 169-178.doi: 10.13475/j.fzxb.20240106001

• 服装工程 • 上一篇    下一篇

基于技能熟练度的服装流水线仿真优化及其应用

黄小源1, 王青云2, 侯珏2,3, 杨阳2,3, 刘正3,4()   

  1. 1.浙江理工大学 纺织科学与工程学院(国际丝绸学院), 浙江 杭州 310018
    2.浙江理工大学 服装学院, 浙江 杭州 310018
    3.丝绸文化传承与产品设计数字化技术文化和旅游部重点实验室, 浙江 杭州 310018
    4.浙江理工大学 国际时装技术学院, 浙江 杭州 310018
  • 收稿日期:2024-01-30 修回日期:2024-09-11 出版日期:2025-01-15 发布日期:2025-01-15
  • 通讯作者: 刘正(1981—),男,教授,博士。主要研究方向为数字化服装技术。E-mail:koala@zstu.edu.cn
  • 作者简介:黄小源(1997—),女,博士生。主要研究方向为数字化服装技术。
  • 基金资助:
    浙江省科技重点研发计划项目(2023C03181);嘉兴市重点研发计划项目(2023BZ10009)

Skill proficiency based simulation optimization of garment assembly line and its application

HUANG Xiaoyuan1, WANG Qingyun2, HOU Jue2,3, YANG Yang2,3, LIU Zheng3,4()   

  1. 1. School of Textile Science and Engineering (International Institute of Silk), Zhejiang Sci-Tech University, Hangzhou,Zhejiang 310018, China
    2. School of Fashion Design & Engineering, Zhejiang Sci-Tech University, Hangzhou,Zhejiang 310018, China
    3. Key Laboratory of Silk Culture Heritance and Products Design Digital Technology,Ministry of Culture and Tourism, Hangzhou, Zhejiang 310018, China
    4. International Institute ofFashion Technology, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, China
  • Received:2024-01-30 Revised:2024-09-11 Published:2025-01-15 Online:2025-01-15

摘要: 针对服装流水线人员编排不合理对生产效益产生的负面影响,以流水线平衡和提高生产效益为目的,提出了一种基于员工技能熟练度与仿真技术的流水线编排方法。采用实际生产数据量化员工技能熟练度评价指标,基于离差平方和的综合集成赋权法确定指标权重,建立技能熟练度评价模型,精确量化员工技能水平;通过员工技能配比系数构建流水线编排模型,提高流水线运行效率;再利用Flexsim工具进行模型仿真优化和评估,得到最佳流水线编排方案;最后,以休闲女裤为例进行生产编排的实例验证。结果表明:流水线编制效率可达93.77%,比考虑员工技能差异性的实际编排提高了6.05%。该模型可有效提高服装生产效益,为服装企业流水线编排提供新思路。

关键词: 服装生产, 服装流水线, 技能熟练度, 生产线仿真, 工序编排

Abstract:

Objective The apparel industry production model is gradually changing to a single-piece assembly line-based "small-order-fast" model, which requires highly coordinated use of human and equipment resources on the assembly line to maximize production efficiency. In assembly line production, there are differences in the ability of operators, and irrational assembly line staffing may result in wasted human resources and production bottlenecks. Aiming at solving the negative influence of unreasonable personnel arrangement on production efficiency, workers' skill proficiency should be considered as an important factor in assembly line scheduling. Therefore, a method of assembly line arrangement based on employee skill proficiency and simulation technology is proposed to balance assembly line and improve production efficiency.

Method In order to make full use of employees' skill proficiency for assembly line process scheduling, the actual production data were adopted to quantify the employee skill proficiency evaluation indexes and multilayer subjective assignment method and independence weight coefficient analysis were used for multidimensional weighting calculation. Based on the integrated assignment method of sum of squared deviations to determine the weights of the indexes, the skill proficiency evaluation model was established, which was adopted to accurately quantify the skill level of the employees. The assembly line arrangement model was then constructed through the coefficients of the employees' skill ratio to improve the efficiency of the assembly line operation. Flexsim tool was adopted to carry out the simulation optimization and evaluation of the model, so as to obtain the optimal arrangement plan for the assembly line. The example validation of the production arrangement was carried out by using the casual pants as an example.

Results The proposed model based on the degree of employee skill was simulated and the simulation results were compared with the actual output. The results of the two models for each station show that the processing time of the actual layout simulation model considering the difference of employees' skills is between 80.5% and 99.9%, with a wide fluctuation range. According to the optimized model, the fluctuation range of processing time is smaller, close to the average beat, and the optimized assembly line is more balanced, and the compilation efficiency is 93.77%, which is 6.05% higher than that actual arrangement considering the difference of employee skills.

Conclusion For the single-piece flow production line, employees' skill proficiency and simulation technology were combined to optimize the balance of apparel production line programming. Comparative validation using examples to show that the proposed method can meet the actual production requirements, and the compilation efficiency reaches 93.77%, which significantly improves the assembly line scheduling efficiency, proving the feasibility of scheduling optimization model based on the coefficient of staff skills matching. The method can provide a reference for experienced managers to adjust the process according to the skill level of employees, and can also provide a specific assembly line scheduling solution for new managers unfamiliar with the skill proficiency of employees.

Key words: garment production, garment assembly line, skill proficiency, production line simulation, process arrangement

中图分类号: 

  • TS941

图1

技能熟练度评价模型建立流程"

表1

影响员工技能熟练度因素统计表"

一级指标 二级指标 专家1 专家2 专家3 专家4 专家5
作业情况 稳定程度
作业速度
合格率
技能水平 作业动作规范
可操作工序等级
员工基本
情况
年龄
文化程度
工龄

表2

工序难易等级划分"

工序难易
等级
表示
符号
常见工序针步类型
很难 A 绱驳、绱、夹缉等
较难 B 扪缉、明缉、明贴、绲边、卷边、走封等
一般 C 拼合、暗缉、折缉、走定、走缩、烫定、包烫等
简单 D 拷边、烫倒、扣烫折烫、走定、刀车修剪等
容易 E 缩烫、模板机合缝、手工修剪、手工点位等

表3

员工技能熟练度评价指标"

总目标 一级指标 二级指标
员工技能熟练度
评价U
作业情况U1 稳定程度U11
作业速度U12
技能水平U2 合格率U13
可操作工序U21

表4

权重计算结果"

评价
指标
主观权重
Wsi/%
客观权重 综合权重
Wi/%
复相关
系数R
复相关系数
倒数1/R
权重
Woi/%
X1 18.429 0.682 1.467 18.095 18.262
X2 31.722 0.399 2.504 30.900 31.311
X3 27.794 0.414 2.417 29.817 28.806
X4 22.055 0.582 1.717 21.188 21.621

图2

基于技能配比系数流水线编排模型"

图3

基于员工技能配比系数流水线编排仿真优化模型"

图4

裤子款式图"

图5

休闲女裤工序缝制流程图"

表5

员工技能配比系数表"

工位编号 员工技能熟练度 技能配比系数
2# 1.24 1.25
3# 1.01 1.54
4# 1.42 1.09
5# 1.38 1.12
6# 1.28 1.22
7# 1.26 1.23
8# 1.02 1.52
9# 1.01 1.53
10# 1.65 0.94
11# 1.49 1.04
12# 1.52 1.02
13# 1.24 1.25

图6

仿真优化前后工序编排方案"

表6

优化前休闲女裤工序分配表"

工位
编号
作业工序 人数 加工
时间/s
设备
1# 分发裁片 1 分包台
2# 8、14、25 1 158.9 单针电脑车
3# 10、34、35、36 1 194.3 单针电脑车
4# 5、6、7、9、11、
13、23、24、26、
28、33
1 224.5 烫台
5# 27、29、30、37 1 200.7 单针电脑车、
三线拷缝车、
五线拷缝车
6# 12、39、40 1 182.5 单针电脑车、
三线拷缝车、
单针配拉筒
7# 1、3、4、22、
31、41、62、63
1 185.5 烫台
8# 2、42、43、
60、61
1 217.8 单针电脑车、
三线拷缝车、
单针配拉筒
9# 15、16、17、
18、46、47
1 209.8 单针电脑车、
三线拷缝车
10# 19、48、49、
50、51、52
1 152.1 单针电脑车、
烫台
11# 53、54、55、56 1 199.0 单针电脑车
12# 57、59 1 199.3 单针电脑车
13# 20、21、38、
44、45、58
1 184.5 单针电脑车
14# 质检 1 质检台

图7

仿真模型员工实际生产时间对比图"

表7

仿真模型数据对比"

编排模型 编制
效率/%
总产
量/件
平均日
产量/件
与实际平均日
产量差值/件
考虑员工技能差异性的
实际编排仿真模型
87.72 1 529 192 -3
基于员工技能配比系数
编排仿真优化模型
93.77 1 683 210 15
[1] 谢子昂, 杜劲松, 赵国华. 衬衫吊挂流水线的自适应动态调度[J]. 纺织学报, 2020, 41(10): 144-149.
XIE Ziang, DU Jinsong, ZHAO Guohua. Adaptive dynamic scheduling of garment hanging production line[J]. Journal of Textile Research, 2020, 41(10): 144-149.
[2] 杨剑锋, 李永梅, 李秀, 等. 基于数据融合的多品种小批量产品质量预测方法[J]. 统计与决策, 2021, 37(9): 33-36.
YANG Jianfeng, LI Yongmei, LI Xiu, et al. Multi-variety and small-batch product quality prediction method based on data fusion[J]. Statistics and Decision, 2021, 37(9): 33-36.
[3] 于昕辰, 曾培峰, 赵冉, 等. 基于蚁群算法的服装生产流水线作业平衡[J]. 东华大学学报(自然科学版), 2014, 40(4): 456-460.
YU Xinchen, ZENG Peifeng, ZHAO Ran, et al. Garment production assembly line balance based on ant colony algorithm[J]. Journal of Donghua Univer-sity (Natural Science), 2014, 40(4): 456-460.
[4] 荀培莉, 杜劲松, 李津, 等. 服装流水线人员与生产岗位契合度模型[J]. 东华大学学报(自然科学版), 2022, 48(5): 108-114,122.
XUN Peili, DU Jinsong, LI Jin, et al. A model of matching degree between the personnel and production post in garment assembly line[J]. Journal of Donghua University (Natural Science), 2022, 48(5): 108-114,122.
[5] SOLNET D J, FORD R C, ROBINSON R N S, et al. Modeling locational factors for tourism employment[J]. Annals of Tourism Research, 2014, 45: 30-45.
[6] 赵亚玲, 葛茂根, 扈静, 等. 柔性生产中基于人员任务匹配度的人员调度[J]. 合肥工业大学学报(自然科学版), 2015, 38(2): 270-273.
ZHAO Yaling, GE Maogen, HU Jing, et al. Personnel scheduling of flexible job-shop problem based on person-task matching degree[J]. Journal of Hefei University of Technology (Natural Science Edition), 2015, 38(2): 270-273.
[7] DAI W H, HU P. Application of BP neural network in the analytic hierarchy process of person-post evaluation model[J]. Journal of Supercomputing, 2020, 76(2): 897-914.
[8] 黄珍珍, 莫碧贤, 温李红. 基于遗传算法及仿真技术的服装生产流水线平衡[J]. 纺织学报, 2020, 41(7): 154-159.
HUANG Zhenzhen, MOK Pikyin, WEN Lihong. Garment production line balance based on genetic algorithm and simulation[J]. Journal of Textile Research, 2020, 41(7): 154-159.
[9] 朱江龙, 肖爱民, 王成佐, 等. 基于NSGA-Ⅱ多目标算法的服装生产流水线平衡[J]. 毛纺科技, 2022, 50(12): 63-69.
ZHU Jianglong, XIAO Aimin, WANG Chengzuo, et al. Balance of garment production line based on evolutionary NSGA-Ⅱalgorithm[J]. Wool Textile Journal, 2022, 50(12): 63-69.
[10] 钱存华, 黄宇博. 基于遗传算法的服装生产混合流水线平衡设计[J]. 毛纺科技, 2021, 49(5): 75-79.
QIAN Cunhua, HUANG Yubo. Balanced design of mixed-model production line of garment production based on genetic algorithm[J]. Wool Textile Journal, 2021, 49(5): 75-79.
[11] 王青云, 侯珏, 郭玲玲, 等. 基于学习曲线改进模型的服装生产计划预测[J]. 浙江理工大学学报(自然科学版), 2023, 49(4): 476-482.
WANG Qingyun, HOU Jue, GUO Lingling, et al. Prediction of garment production plan based on the modified learning curve model[J]. Journal of Zhejiang Sci-Tech University(Natural Science Edition), 2023, 49(4): 476-482.
[12] 孔繁学, 沈津竹, 杜明昊, 等. 基于缝型分析的服装缝制拉筒设计[J]. 毛纺科技, 2019, 47(11): 37-40.
KONG Fanxue, SHEN Jinzhu, DU Minghao, et al. Design and application of folder for garment sewingbased on seam types analysis[J]. Wool Textile Journal, 2019, 47(11): 37-40.
[13] 沈维蕾, 黄莉. 基于组合赋权的装配线作业人员优化配置[J]. 合肥工业大学学报(自然科学版), 2013, 36(9): 1034-1037.
SHEN Weilei, HUANG Li. Allocation optimization of assembly lineworkers based on combination-weighting[J]. Journal of Hefei University of Technology (Natural Science Edition), 2013, 36(9): 1034-1037.
[14] 董东林, 李祥, 林刚, 等. 突水水源的独立性权-模糊可变理论识别模型[J]. 煤田地质与勘探, 2019, 47(5): 48-53.
DONG Donglin, LI Xiang, LIN Gang, et al. Identification model of the independence right-fuzzy variable theory of water inrush source[J]. Coal Geology & Exploration, 2019, 47(5): 48-53.
[15] 俞立平, 郑昆. 期刊评价中不同客观赋权法权重比较及其思考[J]. 现代情报, 2021, 41(12): 121-130.
YU Liping, ZHENG Kun. Comparison and consideration of different objective weighting methods in journal evaluation[J]. Journal of Modern Information, 2021, 41(12): 121-130.
[16] 廖义. 广西北部湾经济区水资源短缺风险分析[D]. 南宁: 广西大学, 2019: 22-25.
LIAO Yi. Risk analysis of water resources shortage in guangxi beibu gulf economic zone[D]. Nanning: Guangxi University, 2019: 22-25.
[17] 时蕊, 唐德善. 基于离差平方和的综合集成赋权法优选城市河道护坡方案[J]. 水电能源科学, 2013, 31(9): 98-100.
SHI Rui, TANG Deshan. Application of combining weight method based on sum of deviation square in optimization of urban river slope protection schemes[J]. Water Resource and Power, 2013, 31(9): 98-100.
[18] 孙影慧, 杜劲松. 服装单件流水线的Flexsim仿真[J]. 纺织学报, 2018, 39(6): 155-161, 166.
SUN Yinghui, DU Jinsong. Simulation of one-piece flow garment assembly line based on Flexsim software[J]. Journal of Textile Research, 2018, 39(6): 155-161, 166.
[19] 宋莹, 田宏, 李敬伊. 基于Flexsim的T恤衫单件流水线仿真优化[J]. 纺织学报, 2020, 41(1): 145-149.
SONG Ying, TIAN Hong, LI Jingyi. Simulation optimization of one-piece flow T-shirt assembly linebased on Flexsim[J]. Journal of Textile Research, 2020, 41(1): 145-149.
[20] 周颖, 闫亦农, 李融融. 基于Flexsim的西装单件流水线优化仿真[J]. 毛纺科技, 2022, 50(12): 70-76.
ZHOU Ying, YAN Yinong, LI Rongrong. Optimization simulation of suit single assembly line based on Flexsim[J]. Wool Textile Journal, 2022, 50(12): 70-76.
[1] 王建萍, 朱妍西, 沈津竹, 张帆, 姚晓凤, 于卓灵. 软体机器人在服装领域的应用进展[J]. 纺织学报, 2024, 45(05): 239-247.
[2] 马梓鸿, 陈慧敏, 丁孟孟, 岳晓丽. 面料堆垛非接触式分层吸附工艺模型与系统构建[J]. 纺织学报, 2024, 45(05): 209-217.
[3] 鞠宇, 王朝晖, 李博一, 叶勤文. 基于机器学习的服装生产线员工效率预测[J]. 纺织学报, 2024, 45(05): 183-192.
[4] 郑路, 颜伟雄, 胡觉亮, 韩曙光. 基于模块化的服装混合流水线平衡优化[J]. 纺织学报, 2022, 43(04): 140-146.
[5] 张苏宁, 王泽, 马大力. 基于改进蚁群算法的Flexsim衬衣流水线仿真优化[J]. 纺织学报, 2021, 42(03): 155-160.
[6] 黄珍珍, 莫碧贤, 温李红. 基于遗传算法及仿真技术的服装生产流水线平衡[J]. 纺织学报, 2020, 41(07): 154-159.
[7] 任荟颖, 邹鲲, 胡小荣. 化纤长丝自动落卷系统仿真平台开发[J]. 纺织学报, 2019, 40(07): 151-157.
[8] 闫亦农 刘立枝 雒彬钰 崔慧荣. 基于粒子群算法的服装生产流水线编制[J]. 纺织学报, 2018, 39(10): 120-124.
[9] 胡少营 张龙琳 张文斌. 采用熟练率的服装流水线节拍设计模型[J]. 纺织学报, 2015, 36(05): 133-138.
[10] 朱秀丽;杭小刚;吴春胜. 服装生产台产量的学习曲线及应用[J]. 纺织学报, 2007, 28(7): 125-128.
[11] 李敏;石旭光. 基于时间竞争的服装生产工艺与组织方式[J]. 纺织学报, 2007, 28(6): 123-127.
[12] 李国富;叶飞帆;徐雪鸿. 服装企业集群敏捷客户化制造研究[J]. 纺织学报, 2006, 27(6): 116-120.
[13] 李克兢;崔世忠. 模块化服装快速生产设计系统的开发[J]. 纺织学报, 2006, 27(1): 50-53.
[14] 李重;胡觉亮;吴庆标. 服装生产流水线的计算机仿真[J]. 纺织学报, 2005, 26(4): 118-120.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!