纺织学报 ›› 2025, Vol. 46 ›› Issue (01): 25-33.doi: 10.13475/j.fzxb.20240201401

• 纤维材料 • 上一篇    下一篇

高密度聚乙烯超细纤维篷布的闪蒸-水刺法制备及其防水透湿性

叶孔萌1, 秦子轩2, 康桂田3, 李赛2, 韩德孝4, 张恒2()   

  1. 1.江苏青昀新材料有限公司, 江苏 南通 226000
    2.中原工学院 智能纺织与织物电子学院, 河南 郑州 451191
    3.恒天重工股份有限公司, 河南 郑州 450000
    4.北京邦维高科新材料科技股份有限公司, 北京 100043
  • 收稿日期:2024-02-14 修回日期:2024-05-30 出版日期:2025-01-15 发布日期:2025-01-15
  • 通讯作者: 张恒(1986—),男,副教授,博士。主要研究方向为新型非织造材料加工技术及其功能性应用。E-mail: m-esp@163.com
  • 作者简介:叶孔萌(1982—),男,博士。主要研究方向为闪蒸法非织造技术及产业化开发。
  • 基金资助:
    河南省高校科技创新人才支持计划资助项目(24HASTIT011);河南省重大科技专项(231100320200);中原工学院优秀科技创新人才支持计划资助项目(K2023YXRC01);中原工学院学科骨干教师支持计划(GG202422)

Flash spinning-hydroentangling process of high-density polyethylene microfibrous tarpaulin and its waterproof and permeable performance

YE Kongmeng1, QIN Zixuan2, KANG Guitian3, LI Sai2, HAN Dexiao4, ZHANG Heng2()   

  1. 1. Jiangsu Qingyun New Materials Co., Ltd., Nantong, Jiangsu 226000, China
    2. College of Intelligent Textile and Fabric Electronics, Zhongyuan University of Technology, Zhengzhou, Henan 451191, China
    3. Hi-Tech Heavy Industry Co., Ltd., Zhengzhou, Henan 450000, China
    4. BW Advanced Materials Co., Ltd., Beijing 100043, China
  • Received:2024-02-14 Revised:2024-05-30 Published:2025-01-15 Online:2025-01-15

摘要: 为获得适用于户外高价值目标遮盖的高强轻薄超细纤维材料,利用闪蒸-水刺工艺制备了高密度聚乙烯(HDPE)超细纤维材料,并对其形貌结构、防护特性和力学性能进行测试。结果表明:所制备样品表现出致密的超细纤维非织造结构,即1~6 μm的纤维相互纠缠成孔隙率为82.7%~85.9%、模态孔径为6~8 μm的柔性多孔材料;纵向拉伸断裂强力和顶破强力随水针能量的增大分别提高到217.8 N和301.3 N,且柔软得分高于80;耐静水压随着样品单位面积质量增大到110 g/m2而提高到6 695.7 Pa,且透气率和水蒸气透过率分别为48.3 mm/s和2 321.2 g/(m2·24 h)。所制备样品兼具有高强、柔软和防水透气性,可作为篷布用于户外运动、物资存储和军用物资等安全防护。

关键词: 闪蒸, 水刺, 高密度聚乙烯, 超细纤维材料, 非织造技术, 户外防护, 篷布, 防水透湿

Abstract:

Objective Tarpaulin, as a physical barrier material, has functions including protection, humidity and heat regulation and asthetic decoration, and has been widely applicated in material storage, safeguarding sports facilities, and concealing military equipment. However, conventional tarpaulins, such as coated fabric and multi-layered composites, demonstrate poor flexibility, limited conformity, and inconvenient portability, because of the high-density and large-thickness of the material. Hence, the development of such fabrics with a combination of high-strength and light weight properties has emerged as a focal point in the sphere of sports, safety protection, and functional textiles.

Method As a commercial strategy for preparing micro-nanofibrous fabrics, a flash spinning process has the advantages of rich source of raw materials and high production efficiency. Unfortunately, the flash spinning process is still mainly associated with thermal bonding process, and the prepared micro-nanofibrous fabrics show poor hand feeling, i.e., strong plastic texture feeling. The hydroentangling technology is known for preparing flexible fibrous webs using high speed water jet to intertwine the fibres. Herein, high-density polyethylene (HDPE) microfibrous fabrics were prepared by using the flash spinning-hydroentangling process, and their morphological structure, mechanical properties, water and moisture permeability and radiation cooling characteristics were experimentally studied.

Results The prepared HDPE microfibrous fabric samples showed a typical nonwoven structure. The circular microfibers with the diameter between 1-6 μm were randomly distributed in the fabric plane, forming a dense microfibrous network with spunlaced nonwoven structural characteristics. The tensile breaking strength of 55 g/m2 samples was higher than that of 45 g/m2 polypropylene melt blown nonwovens (about 10.2 times in the longitudinal direction and 11.3 times in the transverse direction) and 20 g/m2 polypropylene spunbonded nonwovens (about 3.1 times in the longitudinal direction and 4.5 times in the transverse direction), which is roughly equivalent to 70 g/m2 viscose and polyester spunlaced nonwovens. Moreover, benefiting from the macromolecular structure of HDPE with low surface energy and the smooth surface of HDPE microfibers, the samples showed excellent resistance to common liquids, such as water, milk, tea and cola. The hydrostatic pressure increased from 4 557.1 Pa to 4 905.5 Pa, the hydroentangling energy increased from 1 699.3 kJ/m2 to 8 299.7 kJ/m2, while the air permeability and moisture vapor permeability reached 45.1 mm/s and 1 805.1 g/(m2·24 h), respectively. The radiation cooling temperature of the prepared samples was found to be 11.2 ℃ lower than that of the pure cotton fabrics. The HDPE microfibrous fabrics demonstrated high softness, high foldability, good portability and excellent conformability. The folded area of the sample with a spreading area of 15 cm×17 cm was reduced to 1/20. It could be rolled into 3 cm balls or folded into 3 cm×5 cm rectangular handkerchiefs. It is gratifying that HDPE microfiber fabrics are highly suitable for printing, markers, crayons, and other writing tools, delivering clear results. This opens up possibilities for enhancing functions such as aesthetic decoration, camouflage protection, and safety signage on tarpaulins.

Conclusion The HDPE microfiber fabric prepared by the flash spinning-hydroentangling process overcomes the limitations of poor hand feeling and strong plastic texture feeling associated with the flash spinning process, while offering high strength, excellent softness, waterproofness and permeability. It is suitable for high-strength, light weight tarpaulins, providing new possibilities for the development of functional products such as sports equipment, outdoor protection, and military gear.

Key words: flash spinning, hydroentangling, high-density polyethylene, microfiber material, nonwoven technology, outdoor protection, tarpaulin, waterproof and permeable

中图分类号: 

  • TS176

图1

闪蒸-水刺非织造工艺原理图"

表1

主要水刺工艺参数"

样品
编号
单位
面积质量/
(g·m-2)
厚度/
mm
孔隙率/
%
水刺压力/
MPa
布进速度/
(m·min-1)
水针能量/
(kJ·m-2)
1# 55 0.393 85.3 6 3 1 699.3
2# 55 0.389 85.1 7 3 2 105.9
3# 55 0.350 83.5 8 3 2 821.9
4# 55 0.323 82.8 9 3 4 703.2
5# 55 0.277 82.7 10 3 8 299.7
6# 90 0.573 84.7 10 3 8 299.7
7# 95 0.614 84.6 10 3 8 299.7
8# 100 0.731 85.1 10 3 8 299.7
9# 105 0.757 85.4 10 3 8 299.7
10# 110 0.783 85.9 10 3 8 299.7

图2

不同水针能量样品表面和截面的扫描电镜照片 注:图中第1行为表面SEM照片,第2行为截面SEM照片。"

图3

样品结构特征参数"

图4

样品拉伸过程中的力值-位移曲线"

表2

样品的力学性能"

样品
编号
断裂强力/
N
断裂伸长
率/%
顶破

力/N
纵向 横向 纵向 横向
1# 103.8 68.9 27.2 18.3 112.0
2# 105.1 70.1 29.4 18.6 121.8
3# 106.3 70.5 29.7 19.1 133.1
4# 128.2 84.0 32.1 22.6 136.3
5# 134.6 84.7 32.7 23.3 138.7
6# 162.5 138.0 53.3 69.9 230.7
7# 187.7 144.6 55.6 70.9 241.7
8# 198.3 145.1 58.9 74.4 264.1
9# 216.3 157.3 62.9 75.0 289.7
10# 217.8 168.0 66.3 78.6 301.3
聚丙烯熔喷非织造材
料(45 g/m2)
13.1 7.5 16.0 85.7 17.3
聚丙烯纺黏非织造
材料(20 g/m2)
43.8 18.7 16.1 58.7
粘胶水刺非织造材
料(70 g/m2)
130.1 61.8 36.6 74.7
涤纶水刺非织造材
料(70 g/m2)
140.8 57.7 47.0 118.1

表3

样品的防水透气性能"

样品
编号
耐静
水压/Pa
透气率/
(mm·s-1)
水蒸气透过率/
(g·(m2·24 h)-1)
1# 4 557.1 60.6 2 165.6
2# 4 688.7 56.9 2 017.9
3# 4 779.3 52.8 1 968.3
4# 4 804.1 49.3 1 313.0
5# 4 905.5 45.1 1 805.1
6# 6 096.7 48.3 2 321.2
7# 6 241.3 40.8 2 145.9
8# 6 356.3 39.2 1 819.8
9# 6 538.6 36.2 1 706.4
10# 6 695.7 30.8 1 676.6

图5

液滴在HDPE超细纤维材料表面形态图"

图6

样品的防水透气演示实验照片"

图7

样品的辐射降温性能"

图8

不同水针能量和单位面积质量样品的柔软得分"

图9

样品的易便携、异形贴合和印刷性"

[1] 杨海富, 罗丽娟, 师建军, 等. 阻燃防水多功能涤纶篷布的制备及其性能[J]. 纺织学报, 2023, 44(6): 168-174.
YANG Haifu, LUO Lijuan, SHI Jianjun, et al. Preparation of flame-retardant and waterproof multifunctional polyester tarpaulin[J]. Journal of Textile Research, 2023, 44(6): 168-174.
[2] HU Yunhao, YANG Weifeng, WEI Wei, et al. Phyto-inspired sustainable and high-performance fabric generators via moisture absorption-evaporation cycles[J]. Science Advances, 2024. DOI:10.1126/SCIADV.ADK4620.
[3] CHENG Xianwei, LIU Yawen, JIN Jiahao, et al. Metallic phytates modified polyurethane coating for constructing long-lasting flame-retardant outdoor polyester fabric[J]. Progress in Organic Coatings, 2024.DOI:10.1016/J.PORGCOAT.2023.108205.
[4] YANG Tong, LUO Min, ZOU Zhuanyong, et al. Mechanical properties of the surface membrane of lattice spacer-fabric flexible inflatable composites[J]. Textile Research Journal, 2021, 92(7/8): 1088-1097.
[5] CHENG Ningbo, MIAO Dongyang, WANG Chao, et al. Nanosphere-structured hierarchically porous PVDF-HFP fabric for passive daytime radiative cooling via one-step water vapor-induced phase separation[J]. Chemical Engineering Journal, 2023. DOI:10.1016/J.CEJ.2023.141581.
[6] 孟娜, 王先锋, 李召岭, 等. 熔喷非织造布的驻极技术研究进展[J]. 纺织学报, 2023, 44(12): 225-32.
MENG Na, WANG Xianfeng, LI Zhaoling, et al. Research progress in electret technology for melt-blown nonwovens[J]. Journal of Textile Research, 2023, 44(12): 225-232.
[7] ZHANG Heng, ZHAI Qi, CAO Yang, et al. Design and facile manufacturing of tri-layer laminated polyolefin microfibrous fabrics with tailoring pore size for enhancing waterproof breathable performance[J]. Materials & Design, 2023. DOI:10.1016/J.MATDES.2023.111829.
[8] ZHANG Heng, ZHAI Qi, GUAN Xiaoyu, et al. Tri-layered bicomponent microfilament composite fabric for highly efficient cold protection[J]. Small, 2023. DOI:10.1002/SMLL.202303820.
[9] 夏磊, 程博闻, 西鹏, 等. 闪蒸纺纳微米纤维非织造技术的研究进展[J]. 纺织学报, 2020, 41(8): 166-171.
XIA Lei, CHENG Bowen, XI Peng, et al. Research progress of flash spinning nano/micro-fiber nonwoven technology[J]. Journal of Textile Research, 2020, 41(8): 166-171.
[10] 夏云霞, 李磊, 罗章生, 等. 基于闪蒸法制备再生聚乙烯无纺布及其性能研究[J]. 中国塑料, 2022, 36(5): 14-18.
XIA Yunxia, LI Lei, LUO Zhangsheng, et al. Preparation and properties of recycled polyethylene nonwoven fabrics based on flash evaporation[J]. China Plastics, 2022, 36(5): 14-18.
[11] 刘锁, 王雅倩, 魏安方, 等. 功能化水刺粘胶纤维膜的制备及其在漆酶固定化中的应用[J]. 纺织学报, 2022, 43(5): 124-129.
LIU Suo, WANG Yaqian, WEI Anfang, et al. Preparation of functional spunlaced viscose fiber membrane and its application for laccase immobil-ization[J]. Journal of Textile Research, 2022, 43(5): 124-129.
[12] FAHEEM Ahmad, ANUM Nosheen, MUHAMMAD Sohaib Atiq, et al. An eco-friendly hydroentangled cotton non-woven membrane with alginate hydrogel for water filtration[J]. International Journal of Biological Macromolecules, 2024. DOI:10.1016/J.IJBIOMAC.2023.128422.
[13] QIN Zixuan, ZHANG Heng, ZHAI Qi, et al. Flexible polylactic acid/polyethylene glycol@erucamide microfibrous packaging with ordered fiber orientation[J]. Journal of Polymer Research, 2024. DOI: 1007/s10965-024-03888-7.
[14] SHARMA Sumit, SHUKLA Siddharth, RAWAL Amit, et al. Droplet navigation on metastable hydrophobic and superhydrophobic nonwoven materials[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2024.DOI:10.1016/J.COLSURFA.2023.132993.
[15] DUO Yongchao, QIAN Xiaoming, ZHAO Baobao, et al. Easily splittable hollow segmented-pie microfiber nonwoven material with excellent filtration and thermal-wet comfort for energy savings[J]. Journal of Materials Research and Technology, 2022, 17: 876-887.
[16] ESKANDARNIA Ghazaleh, SOLTANI Parham. Effect of fabric structure on in-plane and through-plane hydraulic properties of nonwoven geotextiles[J]. Geotextiles and Geomembranes, 2023, 51(4): 1-14.
[17] METWALLY Bahaa, ZAYED Ahmed M, RASHED Samah A, et al. Sustainable nano-nonwoven fabric production from recycled polyamide 6 waste via electrospinning: controlling characteristics and comprehensive analytical study[J]. Advanced Materials Technologies, 2023. DOI:10.1002/ADMT.202300509.
[18] SADEGHI Mohammad Reza, HOSSEINI Seyed Mohammad Hosseini, ASGHARIAN Ali Asghar Jeddi. Machine learning in optimization of nonwoven fabric bending rigidity in spunlace production line[J]. Scientific Reports, 2023.DOI:10.1038/S41598-023-44571-Z.
[19] KARA Sukran. Mechanical and in-use properties of nonwoven fabrics made of bicomponent microfilament PET/PA fibers[J]. Journal of The Textile Institute, 2023, 115(9): 1-10.
[20] GONG Xiaobao, DING Mingle, GAO Ping, et al. High-performance waterproof, breathable, and radiative cooling membranes based on nanoarchitectured fiber/meshworks[J]. Nano Letters, 2023, 23(23): 11337-11344.
[21] GAO Hanchao, CHEN Yun, WEI Mengchen, et al. Autoclavable nanofiber laminated fabrics with waterproof and breathability for reusable medical protective textiles[J]. ACS Applied Nano Materials, 2023, 6(24): 23496-23505.
[22] XU Yinhan, LI Xiaolong, WANG Xingyu, et al. Synergistic effect of micro-nano surface structure and surface grafting on the efficient fabrication of durable super-hydrophobic high-density polyethylene with self-cleaning and anti-icing properties[J]. Applied Surface Science, 2023.DOI:10.1016/J.APSUSC.2022.155654.
[23] CIELAK Małgorzata, KOWALCZYK Dorota, BARANOWSKA Korczyc Anna, et al. Viscose nonwoven fabric with copper and its multifunctional properties[J]. Cellulose, 2023, 30(15): 9843-9859.
[24] LIU Hanqing, ZHOU Feng, SHI Xiaoyu, et al. A thermoregulatory flexible phase change nonwoven for all-season high-efficiency wearable thermal manage-ment[J]. Nano-Micro Letters, 2023.DOI:10.1007/S40820-022-00991-6.
[1] 李逢春, 孙辉, 于斌, 谢有秀, 张德伟. 共价有机框架材料/粘胶水刺非织造布的制备及其染料吸附性能[J]. 纺织学报, 2025, 46(02): 170-179.
[2] 吕子豪, 徐慧慧, 袁小红, 王清清, 魏取福. 光动力抗菌水刺棉的染整一体化制备及其性能[J]. 纺织学报, 2024, 45(08): 26-34.
[3] 陈锦苗, 李纪伟, 陈萌, 宁新, 崔爱华, 王娜. 壳聚糖微纳米纤维复合抗菌空气滤材的制备及其性能[J]. 纺织学报, 2024, 45(05): 19-26.
[4] 肖昊, 孙辉, 于斌, 朱祥祥, 杨潇东. 壳聚糖-SiO2气凝胶/纤维素/聚丙烯复合水刺材料的制备及其吸附染料性能[J]. 纺织学报, 2024, 45(02): 179-188.
[5] 顾佳华, 戴鑫鑫, 邹专勇, 刘诗仪, 张显涛, 韩旭, 陆斌, 张寅江. 表面刻蚀/聚硅氧烷修饰纯棉水刺材料的制备及其性能[J]. 纺织学报, 2024, 45(02): 189-197.
[6] 刘骏韬, 孙婷, 涂虎, 胡敏, 张如全, 孙雷, 罗霞, 纪华. 全棉水刺非织造布的等离子体冷堆脱脂漂白工艺响应面法优化[J]. 纺织学报, 2023, 44(11): 132-141.
[7] 杨海富, 罗丽娟, 师建军, 马晓光, 郑振荣. 阻燃防水多功能涤纶篷布的制备及其性能[J]. 纺织学报, 2023, 44(06): 168-174.
[8] 杨广鑫, 张庆乐, 李小超, 李思瑜, 陈辉, 程璐, 夏鑫. 热诱导熔接聚氨酯/聚二甲基硅氧烷防水透湿膜的制备及其性能优化[J]. 纺织学报, 2023, 44(03): 28-35.
[9] 梅敏, 钱建华, 周榆凯, 杨晶晶. 纳米SiO2/含氟硅防水透湿整理剂的制备及其应用[J]. 纺织学报, 2022, 43(12): 118-124.
[10] 刘锁, 王雅倩, 魏安方, 赵磊, 凤权. 功能化水刺粘胶纤维膜的制备及其在漆酶固定化中的应用[J]. 纺织学报, 2022, 43(05): 124-129.
[11] 孙哲茹, 张庆乐, 郝林聪, 程璐, 夏鑫. 仿星型拓扑几何结构聚氨酯/聚二甲基硅氧烷防水透湿膜制备与性能[J]. 纺织学报, 2022, 43(04): 40-46.
[12] 朵永超, 钱晓明, 郭寻, 高龙飞, 白赫, 赵宝宝. 中空桔瓣型高收缩聚酯/聚酰胺6超细纤维非织造布的制备及其性能[J]. 纺织学报, 2022, 43(02): 98-104.
[13] 张青松, 张迎晨, 邱振中, 吴红艳, 张志茹, 张夏楠. 凉感面料开发及其吸湿凉感机制研究[J]. 纺织学报, 2022, 43(02): 132-139.
[14] 孙婷, 张如全, 唐子杰, 涂虎, 胡敏. 全棉水刺非织造布的低碳节能冷堆处理工艺[J]. 纺织学报, 2022, 43(01): 89-95.
[15] 刘锁, 武丁胜, 李曼, 赵玲玲, 凤权. 水刺粘胶/聚苯胺复合纤维膜的制备及其吸附性能[J]. 纺织学报, 2021, 42(08): 122-127.
Viewed
Full text
80
HTML PDF
Just accepted Online first Issue Just accepted Online first Issue
0 0 17 0 0 63


Abstract
Just accepted Online first Issue
0 0 98

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!