纺织学报 ›› 2024, Vol. 45 ›› Issue (12): 118-127.doi: 10.13475/j.fzxb.20240201901

• 染整工程 • 上一篇    下一篇

等离子体协同过氧化氢活化体系对纯棉水刺非织造布的练漂处理

肖鑫1, 李伟2, 卢润1, 姜会钰1,3, 李青1,3()   

  1. 1.武汉纺织大学 纺织科学与工程学院, 湖北 武汉 430200
    2.烟台业林纺织印染有限责任公司, 山东 烟台 261400
    3.武汉纺织大学 生物质纤维与生态染整湖北省重点实验室, 湖北 武汉 430200
  • 收稿日期:2024-02-20 修回日期:2024-09-05 出版日期:2024-12-15 发布日期:2024-12-31
  • 通讯作者: 李青(1986—),女,副教授,博士。主要研究方向为清洁染整技术的研发与应用。E-mail: liqing@wtu.edu.cn
  • 作者简介:肖鑫(2000—),男,硕士生。主要研究方向为低温练漂技术的研发与应用。
  • 基金资助:
    国家自然科学基金青年基金项目(52303062);生物质纤维与生态染整湖北省重点实验室开放课题(STRZ202303);湖北省科技厅重点研发计划(助企纾困及包保联2022BAD012)

Scouring and bleaching of cotton nonwoven fabrics using plasma-assisted hydrogen peroxide activation system

XIAO Xin1, LI Wei2, LU Run1, JIANG Huiyu1,3, LI Qing1,3()   

  1. 1. School of Textile Science and Engineering, Wuhan Textile University, Wuhan, Hubei 430200, China
    2. Yantai Yelin Textile Printing & Dyeing Co., Ltd., Yantai, Shandong 261400, China
    3. Hubei Key Laboratory of Biomass Fibers and Eco-dyeing & Finishing, Wuhan Textile University, Wuhan, Hubei 430200, China
  • Received:2024-02-20 Revised:2024-09-05 Published:2024-12-15 Online:2024-12-31

摘要:

针对纯棉水刺非织造布练漂温度高、碱性强、纤维损伤严重等问题,先对其进行等离子体处理,再构建过氧化氢/五乙酰葡萄糖(H2O2/PAG)体系进行练漂处理。对处理前后样品的表面元素组成、微观形貌和结晶结构进行表征,探究等离子体的助漂机制。通过单因素实验分析了等离子体处理时间、H2O2和PAG浓度、NaHCO3浓度、练漂温度和时间对非织造布白度的影响,优化了处理工艺。结果表明:与NaOH/H2O2体系练漂效果相近时,H2O2/PAG体系能将处理温度降低20 ℃,pH值维持在5~7,在此基础上引入等离子体可进一步将H2O2浓度降低50%,或将练漂时间缩短一半;等离子体通过刻蚀纤维表面,增加含氧基团与无定形区比例,使漂液更易渗透纤维,从而提高练漂效率。优化工艺为:等离子体处理时间5 min,漂液中含30 mmol/L H2O2,7.5 mmol/L PAG,30 mmol/L NaHCO3,在70 ℃处理30 min。此工艺条件下处理的样品白度可提升23.8%,水滴铺展时间小于1 s,该效果超过了H2O2/PAG体系与H2O2/NaOH体系的练漂效果。

关键词: 等离子体, 低温练漂, 棉非织造布, 过氧化氢, 功能纺织品

Abstract:

Objective As a healthy and environmentally friendly cotton fiber product, cotton nonwoven fabrics have been widely applied in various fields. All natural cotton fiber contains pigment impurities and needs to be scoured and bleached. Hydrogen peroxide (H2O2) bleaching is usually carried out in high-temperature and strong-alkali environment. The H2O2/activator system can effectively reduce the bleaching temperature and alkalinity. However, partial activators possess ecotoxicity. This research aims to explore for cleaner and more effective scouring and bleaching methods.

Method Firstly, the cotton nonwoven fabric was pre-treated with a plasma cleaning machine for 5 min. Subsequently, the fabric was immediately immersed in H2O2/PAG bleaching solution for treatment at 70 ℃ for 30 min in a constant-temperature dyeing machine. After the treatment, the fabric was squeezed and laundered thoroughly before being air-dried. The solution mentioned above contained H2O2, PAG, NaHCO3, and EDTA-2Na. The fabric's whiteness and hydrophilicity were tested to evaluate the bleaching and scouring performance, respectively. The influences of plasma treatment on the chemical structure of cotton fiber were analyzed using X-ray photoelectron spectrum, scanning electron microscopy, and X-ray diffraction.

Results For achieving comparable bleaching effect via the NaOH and H2O2 routes, the H2O2/PAG system was able to reduce the bleaching temperature by 20 ℃ and to maintain the pH value at 5-7. On this basis, the introduction of plasma was shown to further reduce the H2O2 concentration by 50% or shorten the bleaching time by half, and the degree of polymerization was decreased by 3.6%. Plasma treatment significantly improved the hydrophilicity of cotton nonwoven fabrics. Specifically, the contact angle of water droplets reduced from 106.7° to 38.1°, and the wicking height within 30 min increased from 0 to 5.7 cm. Analysis of the X-ray energy spectrum indicated that both the content of oxygen elements and the number of polar oxygen-containing groups on the fiber surface increased after plasma treatment. Some grooves on the plasma-etched fibers were observed by means of scanning electron microscope. The results of the X-ray diffraction test showed a reduction in the cotton fiber's crystallinity by 13.4% compared with the untreated original fiber. The results of single-factor experiments demonstrated the following. Prolonging the plasma treatment time had little effect on the whiteness and yellowness of the nonwoven fabrics, but it evidently enhanced their hydrophilicity. An increase of H2O2 and PAG concentration produced more peracetic acid, contributing to an increase in whiteness and a decrease in the pH of the solution. The pH medium created by 30 mmol/L NaHCO3 was suitable for the complete perhydrolysis of PAG, resulting in a near-neutral environment and desired bleaching results. Temperature was a significant factor affecting the whiteness of bleached fabrics. Fabrics' yellowness increased instead when the bleaching temperature exceeded 70 ℃. The whiteness showed a rapid increase within the scouring and bleaching duration of 0 to 30 min, indicating the high efficiency of the plasma/H2O2/PAG system. Further extension of time did not result in significant whiteness improvement.

Conclusion Approximate whiteness enhancement is obtained from plasma/H2O2/PAG and H2O2/NaOH system. However, 50% H2O2 concentration, 20 ℃ temperature, or 50% bleaching duration can be saved when using the front system. Moreover, plasma/H2O2/PAG system can provide a near-neutral pH environment. Thanks to the mild bleaching environment, the polymerization of cotton fiber only decreases by 3.6%. Plasma treatment increases the number of oxidation groups on the surface of the cotton fiber, induces physical etching on its surface, and improves the proportion of the amorphous zone. Above changes in fiber's structure achieves an apparent improvement in hydrophilicity of cotton non-woven fabric. As a result, the penetration and oxidation efficiency of the bleaching agent towards pigment impurities are correspondingly improved. When the optimal process parameters are applied (with concentrations of H2O2, PAG, and NaHCO3 at 30, 7.5, and 30 mmol/L respectively, and plasma treatment for 5 min, followed by 70 ℃ bleaching for 30 min), the whiteness of the fabric can reach 82.1%, which is 23.8% higher than untreated fabric.

Key words: plasma, low-temperature scouring and bleaching, cotton nonwoven fabric, hydrogen peroxide, functional textile

中图分类号: 

  • TS192.5

表1

3种体系工艺参数与白度效果对比"

样品
编号
H2O2浓度/
(mmol·L-1)
PAG浓度/
(mmol·L-1)
渗透剂质量浓度/
(g·L-1)
温度/
时间/
min
等离
子体
漂液pH值 白度/% 白度
提升率/%
处理前 处理后
1 0 0 0 0 0 × 66.3±1.4
2 0 0 0 0 0 66.7±0.4 0.6
3 60 0 2.0 90 60 × 10.6 9.7 83.1±0.3 25.3
4 60 15 2.0 70 60 × 7.2 5.0 83.4±0.3 25.8
5 60 15 0 70 60 × 7.3 5.0 81.8±0.2 23.4
6 30 7.5 0 70 60 7.4 6.7 83.6±0.3 26.1
7 60 15 0 70 30 7.3 5.6 83.2±0.6 25.5
8 60 15 0 50 60 7.3 6.7 82.4±0.3 24.3
9 60 15 0 70 60 7.2 4.9 86.6±0.3 30.6
10 30 7.5 0 70 60 × 7.4 6.7 76.6±1.2 15.5
11 60 15 0 70 30 × 7.3 5.6 77.0±1.0 16.1
12 60 15 0 50 60 × 7.3 6.7 76.5±0.8 15.4

图1

PAG过水解反应历程"

表2

非织造布的亲水性"

样品编号 芯吸高度/cm 水滴铺展时间/s 接触角/(°)
1 0 >60 106.7
2 5.7±0.8 <1 38.1
3 3.5±0.8 <1 64.3
4 2.8±0.2 1.3±0.1 77.5
5 0.5±0.1 >60 96.7
6 3.1±0.3 3.9±0.6 84.8
7 3.1±0.3 4.5±0.6 86.1
8 2.5±0.6 5.7±0.7 90.4
9 4.0±1.1 <1 57.3
10 0.6±0.2 >60 101.1
11 0.7±0.3 >60 103.8
12 0.4±0.1 >60 105.2

图2

不同体系处理非织造布XPS光谱图"

图3

非织造布的SEM照片"

图4

非织造布的X射线衍射光谱"

图5

等离子体处理时间对非织造布白度、黄度、芯吸高度及水滴铺展时间的影响"

图6

H2O2浓度对非织造布白度、黄度和练漂前后漂液pH值的影响"

图7

NaHCO3浓度对非织造布白度、黄度和练漂前后漂液pH值的影响"

图8

练漂温度和时间对非织造布白度和黄度的影响"

[1] SADEGHI M R, HOSSEINI VARKIYANI S M, ASGHARIAN JEDDI A A. Machine learning in optimization of nonwoven fabric bending rigidity in spunlace production line[J]. Scientific Reports, 2023. DOI: 10.1038/s41598-023-44571-z.
[2] LAN J, WU Y, LIN C, et al. Totally-green cellulosic fiber with prominent sustained antibacterial and antiviral properties for potential use in spunlaced non-woven fabric production[J]. Chemical Engineering Journal, 2023. DOI: 10.1016/j.cej.2023.142588.
[3] PENG M, WU S, DU J, et al. Establishing a rapid pad-steam process for bleaching of cotton fabric with an activated peroxide system[J]. ACS Sustainable Chemistry & Engineering, 2018, 6(7): 8599-8603.
[4] 武守营, 张琳萍, 徐红, 等. 金属配合物催化棉织物低温漂白研究进展[J]. 纺织学报, 2021, 42(3): 27-35.
WU Shouying, ZHANG Linping, XU Hong, et al. Research progress of low-temperature bleaching of cotton fabrics catalyzed by metal complexes[J]. Journal of Textile Research, 2021, 42(3): 27-35.
[5] 纪柏林, 王碧佳, 毛志平. 纺织染整领域支撑低碳排放的关键技术[J]. 纺织学报, 2022, 43(1): 113-121.
JI Bolin, WANG Bijia, MAO Zhiping. Key technologies supporting low-carbon emissions in dyeing and finishing of textiles[J]. Journal of Textile Research, 2022, 43(1): 113-121.
[6] 张悦, 胡丹玲, 任金娜, 等. 棉织物低温近中性一浴一步法练漂[J]. 纺织学报, 2019, 40(9): 83-90.
ZHANG Yue, HU Danling, REN Jinna, et al. Scouring and bleaching of cotton fabric by low temperature near neutrality one-bath one-step process[J]. Journal of Textile Research, 2019, 40(9): 83-90.
[7] XU C, LONG X, DU J, et al. A critical reinvestigation of the TAED-activated peroxide system for low-temperature bleaching of cotton[J]. Carbohydrate Polymers, 2013, 92(1): 249-253.
[8] CHEN W, WANG L, WANG D, et al. Recognizing a limitation of the TBLC-activated peroxide system on low-temperature cotton bleaching[J]. Carbohydrate Polymers, 2016, 140: 1-5.
[9] SHAO D, LIU G, CHEN H, et al. Combination of surfactant action with peroxide activation for room-temperature cleaning of textiles[J]. Journal of Surfactants and Detergents, 2021, 24(2): 357-364.
[10] 唐文君, 彭明华, 向中林, 等. 应用阳离子漂白活化剂的棉织物快速轧蒸漂白工艺[J]. 纺织学报, 2019, 40(2): 125-129.
TANG Wenjun, PENG Minghua, XIANG Zhonglin, et al. Rapid pad-steam peroxide bleaching process of cotton woven fabric using a cationic bleach activator[J]. Journal of Textile Research, 2019, 40(2): 125-129.
[11] 郑传浪. 新型活化剂在棉针织物低温漂白中的应用工艺研究[D]. 上海: 东华大学, 2021: 26.
ZHENG Chuanlang. Study on application of cotton knitted fabric bleaching at low temperature with new activator[D]. Shanghai: Donghua University, 2021: 26.
[12] FARRAN A, CAI C, SANDOVVAL M, et al. Green solvents in carbohydrate chemistry: from raw materials to fine chemicals[J]. Chemical Reviews, 2015, 115(14): 6811-6853.
[13] LIU K, ZHANG X, YAN K. Low-temperature bleaching of cotton knitting fabric with H2O2/PAG system[J]. Cellulose, 2017, 24: 1555-1561.
[14] NAEBE M, LI Q, ONUR A, et al. Investigation of chitosan adsor-ption onto cotton fabric with atmospheric helium/oxyge-n plasma pre-treatment[J]. Cellulose, 2016, 23: 2129-2142.
[15] PANDA S K B C, SEN K, MUKHOPADHYAY S. Sustainable pretreatments in textile wet processing[J]. Journal of Cleaner Production, 2021. DOI: 10.1016/j.jclepro.2021.129725.
[16] SANDANUWAN T, HENDENIYA N, AMARASINGHE D A S, et al. The effect of atmospheric pressure plasma treatment on wetting and absorbance properties of cotton fabric[J]. Materials Today: Proceedings, 2021, 45: 5065-5068.
[17] 刘骏韬, 孙婷, 涂虎, 等. 全棉水刺非织造布的等离子体冷堆脱脂漂白工艺响应面法优化[J]. 纺织学报, 2023, 44(11): 132-141.
LIU Juntao, SUN Ting, TU Hu, et al. Optimization of plasma cold pad-batch degreasing/bleaching process for cotton spunlace nonwoven by response surface method[J]. Journal of Textile Research, 2023, 44(11): 132-141.
[18] LI Q, LU R, JIANG H, et al. Efficient and sustainable bleaching of cotton/spandex integrating UVA radiation and peroxide activator a study focus on the degradation mechanism of natural pigments in fibres[J]. Arabian Journal of Chemistry, 2023. DOI: 10.1016/j.arabjc.2023.105348.
[19] 彭明华. 漂白活化剂与纤维素纤维间的电荷作用对漂白过程的影响[D]. 无锡: 江南大学, 2019: 13.
PENG Minghua. Influence of electric charge effect between bleach activators and cellulose fibers on bleaching process.[D]. Wuxi: Jiangnan University, 2019: 13.
[20] PANDA S K B C, SEN K, MUKHOPADHYAY S. A sustainable low temperature combined pretreatment process for cotton assisted by ultraviolet-C radiation[J]. Sustainable Materials and Technologies, 2023. DOI: 10.1016/j.susmat.2023.e00664.
[21] 张星月, 韩朋帅, 王一萌, 等. 非对称润湿特性纺织基材上高稳固光子晶体的构筑[J]. 纺织学报, 2022, 43(8): 88-94.
ZHANG Xingyue, HAN Pengshuai, WANG Yimeng, et al. Construction of highly stable photonic crystals on textile substrates with asymmetric wetting characteris-tics[J]. Journal of Textile Research, 2022, 43(8): 88-94.
[22] 刘铭华. 酶前处理对棉织物润湿性能影响及工艺研究[D]. 上海: 东华大学, 2019: 20.
LIU Minghua. Effect of enzymatic pretreatment on wetting properties of cotton fabric and its process[D]. Shanghai: Donghua University, 2019: 20.
[23] 高洁, 马中华, 赵波. 过氧乙酸预处理对亚麻短纤维可纺性的影响[J]. 棉纺织技术, 2016, 44(12): 30-33.
GAO Jie, MA Zhonghua, ZHAO Bo. Spinnability effect of short flax fiber after peracetic acid pretreatmen.[J]. Cotton Textile Technology, 2016, 44(12):30-33.
[24] JETHVA S, BHABHOR F, PATIL C, et al. Studies of physio-chemical changes of dielectric barrier discharge plasma treated aramid fibers[J]. Vacuum, 2023. DOI: 10.1016/j.vacuum.2023.112313.
[25] 王孟泽. 新型过氧化氢活化体系的构建及低温练漂性能研究[D]. 无锡: 江南大学, 2015: 14-15.
WANG Mengze. Establishment of novel activated peroxide systems for low-temperature scouring and bleaching.[D]. Wuxi: Jiangnan University, 2015: 14-15.
[26] 张娜. 染色涤/棉纺织品循环再生研究[D]. 上海: 东华大学, 2020: 28.
ZHANG Na. Research on recycling of dyed polyester/cotton textile[D]. Shanghai: Donghua University, 2020: 28.
[27] JAIN V K, CHATTERJEE A. Graphene coated cotton nonwoven for electroconductive and UV protection applications[J]. Journal of Industrial Textiles, 2022, 51(3): 4390S-4409S.
[28] 王丹凤. 放电等离子体对壳聚糖和棉纤维素解聚性能和机制的研究[D]. 咸阳: 西北农林科技大学, 2022: 33.
WANG Danfeng. Study on the depolymerization properties and mechanisms of chitosan and cotton cellulose by discharge plasma[D]. Xianyang: Northwest A&F University, 2022: 33.
[29] 荆蕴卓. 棉织物新型低温短流程前处理工艺体系研究[D]. 无锡: 江南大学, 2022: 25.
JING Yunzhuo. Study on new low-temperature shortened pretreatment process system for cotton fabrics[D]. Wuxi: Jiangnan University, 2022: 25.
[30] ZHOU Y, ZHENG G, ZHANG J, et al. An eco-friendly approach to low-temperature and near-neutral bleaching of cotton knitted fabrics using glycerol triacetate as an activator[J]. Cellulose, 2021, 28(12): 8129-8138.
[31] 张仲达. 聚酰胺酯织物的漂白工艺研究与应用[D]. 天津: 天津工业大学, 2017: 16.
ZHANG Zhongda. Research and application of bleaching process of polyamide ester fabric[D]. Tianjin:Tiangong University, 2017: 16.
[1] 徐豫松, 周杰, 甘佳怡, 张涛, 张先明. 含磷氮水性聚氨酯的制备及其在涤纶织物阻燃整理中应用[J]. 纺织学报, 2024, 45(07): 112-120.
[2] 程献伟, 刘亚文, 关晋平, 陈瑞. 生物质植酸改性聚氨酯涂层锦纶6织物的制备及其阻燃性能[J]. 纺织学报, 2024, 45(06): 120-126.
[3] 方进, 张广知, 徐珍珍. 点击化学在功能纺织品制备中的应用研究进展[J]. 纺织学报, 2024, 45(03): 227-235.
[4] 向宇, 周爱晖, 王思翔, 季巧, 文馨可, 袁久刚. 基于拉曼光谱的羊毛二硫键及构象含量分析[J]. 纺织学报, 2024, 45(02): 45-51.
[5] 方春月, 刘紫璇, 贾立霞, 阎若思. 双等离子体改性超高分子量聚乙烯复合材料的弹道响应[J]. 纺织学报, 2024, 45(02): 77-84.
[6] 范硕, 杨鹏, 曾锦豪, 宋潇迪, 龚昱丹, 肖遥. 抗熔滴型多元有机硅阻燃剂整理锦纶6织物的制备及其性能[J]. 纺织学报, 2024, 45(01): 152-160.
[7] 刘骏韬, 孙婷, 涂虎, 胡敏, 张如全, 孙雷, 罗霞, 纪华. 全棉水刺非织造布的等离子体冷堆脱脂漂白工艺响应面法优化[J]. 纺织学报, 2023, 44(11): 132-141.
[8] 肖云超, 杨雅茹, 郭健鑫, 王童谣, 田强. 高温自交联抗熔滴阻燃涤纶织物的制备及其性能[J]. 纺织学报, 2023, 44(11): 151-159.
[9] 王予涛, 丛洪莲, 顾洪阳. 纬编成形护膝结构设计及其热湿舒适性[J]. 纺织学报, 2023, 44(10): 68-74.
[10] 陈露, 吴孟锦, 贾立霞, 阎若思. 氧等离子体改性超高分子量聚乙烯纤维复合材料层间损伤声发射特征分析[J]. 纺织学报, 2023, 44(07): 116-125.
[11] 葛佳慧, 毛志平, 张琳萍, 钟毅, 隋晓锋, 徐红. 基于二维碳化钛材料修饰的功能棉针织物制备及其性能[J]. 纺织学报, 2023, 44(04): 132-138.
[12] 张楚丹, 王锐, 王文庆, 刘燕燕, 陈睿. 阳离子改性阻燃涤纶织物的制备及其性能[J]. 纺织学报, 2022, 43(12): 109-117.
[13] 赵伦玉, 隋晓锋, 毛志平, 李卫东, 冯雪凌. 气凝胶材料在纺织品上的应用研究进展[J]. 纺织学报, 2022, 43(12): 181-189.
[14] 郭亚飞, 梁高勇, 王美慧, 郝新敏. 臭氧等离子体预处理对芳纶染色性能的影响[J]. 纺织学报, 2022, 43(10): 83-88.
[15] 陈珺娴, 李伟萍, 付琪轩, 冯新星, 张华. 芳纶/阻燃粘胶/阻燃锦纶混纺织物制备及其性能[J]. 纺织学报, 2022, 43(09): 107-114.
Viewed
Full text
19
HTML PDF
Just accepted Online first Issue Just accepted Online first Issue
0 0 5 0 0 14

  From Others local
  Times 9 10
  Rate 47% 53%

Abstract
71
Just accepted Online first Issue
0 0 71
  From Others local
  Times 56 15
  Rate 79% 21%

Cited

Web of Science  Crossref   ScienceDirect  Search for Citations in Google Scholar >>
 
This page requires you have already subscribed to WoS.
  Shared   
  Discussed   
No Suggested Reading articles found!