纺织学报 ›› 2025, Vol. 46 ›› Issue (01): 148-153.doi: 10.13475/j.fzxb.20240303901

• 服装工程 • 上一篇    下一篇

消防服衣下空气层结构对人体热防护的影响规律

韩烨1, 田苗1,2,3()   

  1. 1.东华大学 服装与艺术设计学院, 上海 200051
    2.东华大学 功能防护服装研究中心, 上海 200051
    3.东华大学 现代服装设计与技术教育部重点实验室, 上海 200051
  • 收稿日期:2024-03-05 修回日期:2024-09-20 出版日期:2025-01-15 发布日期:2025-01-15
  • 通讯作者: 田苗(1989—),女,副教授,博士。主要研究方向为功能服装数值模拟及人体工效学。E-mail:tianmiao@dhu.edu.cn
  • 作者简介:韩烨(2000—),女,硕士生。主要研究方向为功能服装数值模拟。
  • 基金资助:
    中央高校基本科研业务费专项资金资助项目(2232023D-06);中央高校基本科研业务费专项资金资助项目(2232025G-08)

Influence of air gap under firefighting clothing on human thermal protection

HAN Ye1, TIAN Miao1,2,3()   

  1. 1. College of Fashion and Design, Donghua University, Shanghai 200051, China
    2. Protective Clothing Research Center, Donghua University, Shanghai 200051, China
    3. Key Laboratory of Clothing Design and Technology, Ministry of Education, Donghua University, Shanghai 200051, China
  • Received:2024-03-05 Revised:2024-09-20 Published:2025-01-15 Online:2025-01-15

摘要: 为降低火灾环境对消防员皮肤烧伤的危害,构建空气层三维传热模拟装置,模拟服装开口处的衣下空气层状态,并开展低热辐射条件下的热暴露试验,探究着装人体与外界环境的热量交换及对人体皮肤热防护的影响规律。结果表明:与封闭空气层相比,开放空气层条件下织物受热面的峰值温度更低;空气层厚度的增加和边界的开放能够提升织物系统的热防护能力;3 mm空气层条件下,封闭状态的热防护性能更好,而其它厚度下开放空气层的防护能力更好;与无空气层条件相比,3~18 mm的封闭空气层可将热流密度衰减提升16.2%~44.5%、皮肤温度降低9%~26.7%、二级烧伤时间延长10.0%~100.8%;开放空气层可将热流密度衰减提升8.0%~50.7%、皮肤温度降低4.7%~30.0%、二级烧伤时间延长7.2%~140.9%。

关键词: 消防服, 职业安全, 空气层, 热防护, 二级烧伤时间

Abstract:

Objective Low-level heat flux densities (2-20 kW/m2) in conventional and hazardous thermal environments are commonly encountered in actual firefighting operations, especially in complex and variable forest fire conditions. Prolonged exposure in these environments can result in skin burns among firefighters, posing a threat to their occupational safety. In order to mitigate the risk of skin burns caused by firefighting environments, the influence of the air gap structure under firefighting clothing in low radiation heat environments on skin thermal protection was investigated. This research provides scientific insights for the rational design of firefighting gear and the prediction of safe operating durations for firefighters, thereby playing a crucial role in enhancing firefighters' occupational safety.

Method By constructing a three-dimensional heat transfer simulation device for the air gap, the heat exchange process between air gap close to clothing openings and external environment in actual dressing conditions is explored. Based on the stored energy test device, open and closed air gaps were set up, and thermal exposure experiments with various air gap thicknesses were conducted. The temperature variations on fabric surfaces under different air gap conditions, the thermal protection provided by the fabric system to the human body, and the contribution of the air gap therein were analyzed.

Results The results showed that an increase in air gap thickness and the openness of boundaries both positively impacted on the thermal protection capacity of the fabric system. The open air gaps exhibited stronger thermal protective performance, except for 3 mm-thick air gap. In comparison to situations without an air gap, closed air gaps ranging from 3 mm to 18 mm were found to reduce skin peak temperature by 9%-26.7% and prolong the second-degree burn time by 10.0%-100.8%. The conditions of open air gaps could reduce skin peak temperature by 4.7%-30.0%, and prolong the second-degree burn time by 7.2%-140.9%. The thermal flux density attenuation increased with the thickening of the air gap, yet its change rate exhibited inconsistency across different thickness intervals of the air gap. Under conditions of open and closed configurations, distinct heat transfer patterns existed within the space under the clothing. Results from linear regression fitting indicated a significant negative linear correlation between the peak temperature difference of the skin and the thickness of the air gap under closed conditions. Conversely, under open conditions, the relationship between the peak temperature difference of the skin and the thickness of the air gap was not statistically significant.

Conclusion In order to investigate the impact of air gap structural characteristics under firefighting clothing on thermal protection, the heat transfer within the clothing system and its influence on skin thermal protection were quantifies. The protective mechanisms associated with different air gap structural features was revealed. The findings reveal that increasing air gap thickness and openness positively influence the thermal protection capabilities of the fabric system. However, the thermal protection capacity of the fabric system does not exhibit a linear increase with thickness. These findings offer theoretical underpinnings for burn protection among firefighters and the prediction of safe operating durations.

Key words: firefighting clothing, occupational safety, air gap, thermal protection, second-degree burn time

中图分类号: 

  • TS941.73

图1

2种空气层条件下的试验装置示意图 单位:mm"

图2

织物受热面中心点温度变化曲线"

图3

不同空气层厚度与形式的织物表面峰值温度及其变化率"

图4

开放及封闭式空气层条件下皮肤峰值温度差值与空气层厚度的线性回归拟合结果"

图5

空气层厚度与形式对热流密度衰减系数及其变化率的影响"

图6

空气层厚度与形式对皮肤峰值温度及其变化率的影响"

表1

不同空气层条件下的二级烧伤时间"

厚度/mm 二级烧伤时间/s
封闭式空气层 开放式空气层
0 51.7 51.7
3 56.9 55.4
6.4 67.3 88.2
12 88.6 104.7
18 103.8 124.6
30 414.3

图7

空气层厚度与形式对二级烧伤时间及其变化率的影响"

[1] KALAZIĆ A, BRNADA S, KIŠ A. Thermal protective properties and breathability of multilayer protective woven fabrics for wildland firefighting[J]. Polymers, 2022. DOI:10.3390/polym14142967.
[2] MCQUERRY M, EASTER E. Wildland firefighting personal protective clothing cleaning practices in the United States[J]. Fire Technology, 2022, 58(3): 1667-1688.
[3] CHOI J, KIM H, KANG B, et al. Analysis of clothing air gap in a protective suit according to the body postures[J]. Journal of Fiber Bioengineering and Informatics, 2014, 7(4): 573-581.
[4] TORVI D A, DOUGLAS D J, FAULKNER B. Influence of air gaps on bench-top test results of flame resistant fabrics[J]. Journal of Fire Protection Engineering, 1999, 10(1): 1-12.
[5] SONG G, CAO W, GHOLAMREZA F. Analyzing stored thermal energy and thermal protective performance of clothing[J]. Textile Research Journal, 2011, 81(11): 1124-1138.
[6] TIAN M, LI J. Heat transfer modeling within the microclimate between 3D human body and clothing: effects of ventilation openings and fire intensity[J]. International Journal of Clothing Science and Technology, 2021, 33(4): 542-561.
[7] WAKATSUKI K, SEITA R, WATANABE N, et al. Characterization of air gaps and their impact on the thermal insulation performance of multi-layer firefighter clothing[J]. Fire Technology, 2022, 58(4): 1863-1887.
[8] UDAYRA J, TALUKDAR P, DAS A, et al. Numerical modeling of heat transfer and fluid motion in air gap between clothing and human body: effect of air gap orientation and body movement[J]. International Journal of Heat and Mass Transfer, 2017, 108: 271-291.
[9] FU M, WENG W, YUAN H. Effects of multiple air gaps on the thermal performance of firefighter protective clothing under low-level heat exposure[J]. Textile Research Journal, 2014, 84(9): 968-978.
[10] HE J, CHEN Y, WANG L, et al. Quantitative assessment of the thermal stored energy in protective clothing under low-level radiant heat exposure[J]. Textile Research Journal, 2018, 88(24): 2867-2879.
[11] 王琦, 田苗, 苏云, 等. 开放/封闭空气层对阻燃织物热防护性能的影响[J]. 纺织学报, 2020, 41(12): 54-58.
WANG Qi, TIAN Miao, SU Yun, et al. Effect of open/closed air layer on thermal protective performance of flame-resistant fabrics[J]. Journal of Textile Research, 2020, 41(12): 54-58.
[12] ZHANG X, TIAN M, WANG Q, et al. Thermal degradation behavior of flame-resistant fabrics exposed to fires: effect of air gap type and thickness[J]. Textile Research Journal, 2022, 92(21/22): 4313-4324.
[1] 韩烨, 田苗, 蒋青昀, 苏云, 李俊. 织物-空气层-皮肤三维结构建模及其传热模拟[J]. 纺织学报, 2024, 45(02): 198-205.
[2] 杨孟想, 刘让同, 李亮, 刘淑萍, 李淑静. 机织物的热传递与强热条件下热防护性能[J]. 纺织学报, 2023, 44(11): 74-82.
[3] 朱晓荣, 向攸慧, 何佳臻, 翟丽娜. 低辐射热条件下附加相变材料织物的蓄放热双重特性[J]. 纺织学报, 2023, 44(06): 152-160.
[4] 韦玉辉, 郑晨, 程尔骕, 赵书涵, 苏兆伟. 光催化自清洁芳纶织物的制备及其性能[J]. 纺织学报, 2023, 44(05): 171-176.
[5] 周泠卉, 曾佩, 鲁瑶, 付少举. 聚乙烯醇纳米纤维膜/罗纹空气层织物复合吸声材料的制备及其性能[J]. 纺织学报, 2023, 44(03): 73-78.
[6] 王诗潭, 江舒, 王云仪. 内穿服装对消防员热生理和心理反应的影响[J]. 纺织学报, 2023, 44(01): 164-170.
[7] 朱晓荣, 何佳臻, 向攸慧, 王敏. 热防护服蓄热防护与放热危害双重特性的研究进展[J]. 纺织学报, 2023, 44(01): 228-237.
[8] 代璐, 胡泽旭, 王研, 周哲, 张帆, 朱美芳. 聚苯硫醚/石墨烯纳米复合纤维的燃烧和炭化行为[J]. 纺织学报, 2023, 44(01): 71-78.
[9] 赵伦玉, 隋晓锋, 毛志平, 李卫东, 冯雪凌. 气凝胶材料在纺织品上的应用研究进展[J]. 纺织学报, 2022, 43(12): 181-189.
[10] 郭静, 周倩雯, 何佳臻. 形变状态下热防护织物的蓄放热双重特性[J]. 纺织学报, 2022, 43(07): 67-74.
[11] 宫学斌, 刘元军, 赵晓明. 热防护用气凝胶材料的研究进展[J]. 纺织学报, 2022, 43(06): 187-196.
[12] 钱静, 赵蒙蒙, 党天华. 多孔式通风服衣下空气层的定量研究[J]. 纺织学报, 2022, 43(04): 133-139.
[13] 朱晓荣, 何佳臻, 王敏. 相变材料在热防护服上的应用研究进展[J]. 纺织学报, 2022, 43(04): 194-202.
[14] 张文欢, 李俊. 低热辐射环境中消防服系统内热传递机制的研究进展[J]. 纺织学报, 2021, 42(10): 190-198.
[15] 于志财, 刘金如, 何华玲, 马胜男, 姜会钰. 基于高分子水凝胶的阻燃织物研究与应用进展[J]. 纺织学报, 2021, 42(09): 180-186.
Viewed
Full text
55
HTML PDF
Just accepted Online first Issue Just accepted Online first Issue
0 0 16 0 0 39

  From Others local
  Times 28 27
  Rate 51% 49%

Abstract
93
Just accepted Online first Issue
0 0 93
  From Others local
  Times 61 32
  Rate 66% 34%

Cited

Web of Science  Crossref   ScienceDirect  Search for Citations in Google Scholar >>
 
This page requires you have already subscribed to WoS.
  Shared   
  Discussed   
No Suggested Reading articles found!