纺织学报 ›› 2024, Vol. 45 ›› Issue (08): 65-71.doi: 10.13475/j.fzxb.20240304602

• 纺织科技新见解学术沙龙专栏:先进非织造品与技术 • 上一篇    下一篇

聚四氟乙烯膜的超疏水改性及应用研究进展

李成才1,2, 朱登辉1, 朱海霖1,2, 郭玉海1()   

  1. 1.浙江理工大学 纺织科学与工程学院(国际丝绸学院), 浙江 杭州 310018
    2.现代纺织技术创新中心(鉴湖实验室), 浙江 绍兴 312030
  • 收稿日期:2024-03-19 修回日期:2024-05-10 出版日期:2024-08-15 发布日期:2024-08-21
  • 通讯作者: 郭玉海(1973—),男,研究员,博士。主要研究方向为高分子材料。E-mail:gyh@zstu.edu.cn
  • 作者简介:李成才(1990—),男,讲师,博士。主要研究方向为高分子分离膜材料制备。
  • 基金资助:
    国家自然科学基金青年科学基金资助项目(52303160)

Research progress of superhydrophobic modification and application of polytetrafluoroethylene membrane

LI Chengcai1,2, ZHU Denghui1, ZHU Hailin1,2, GUO Yuhai1()   

  1. 1. College of Textile Science and Engineering (International Institute of Silk), Zhejiang Sci-Tech University, Hangzhou, Zhejiang 300318, China
    2. Innovation Center of Advanced Textile Technology (Jianhu Laboratory), Shaoxing, Zhejiang 312030, China
  • Received:2024-03-19 Revised:2024-05-10 Published:2024-08-15 Online:2024-08-21

摘要:

超疏水聚四氟乙烯膜材料具有突出的化学稳定性、高耐热性、强疏水性和高断裂韧性等优点,在膜分离技术领域中广泛应用。为开发高效、低成本、耐久稳定、绿色环保的超疏水改性技术,根据聚四氟乙烯膜的超疏水改性原理,从聚四氟乙烯分子化学结构出发,分析了2种改性机制“不改变聚四氟乙烯的化学结构”和“改变聚四氟乙烯的化学结构”,介绍了超疏水聚四氟乙烯膜材料制备和改性中的优缺点,阐述了超疏水聚四氟乙烯膜材料的功能性应用形式和领域,最后探讨了超疏水聚四氟乙烯膜材料目前存在的问题及未来发展的方向,以期为高性能超疏水聚四氟乙烯膜材料的进一步研究提供参考。

关键词: 分离膜材料, 聚四氟乙烯膜, 超疏水, 改性方法, 分离技术

Abstract:

Significance Surfaces with special wetting behavior, especially superhydrophobic surfaces with high water contact angles greater than 150° and low slide angles less than 10°, have attracted attention because they can be used in a variety of applications requiring special surface properties, such as anti-corrosion, self-cleaning, and drag reduction. Polyterafluoroethylene(PTFE) is a good material for preparing superhydrophobic membranes because of its good thermal stability, chemical resistance, low surface energy and low thermal conductivity. However, the surface of the membrane material prepared by PTFE resin cannot meet the requirements of superhydrophobic, so the superhydrophobic modification becomes the focus of research.

Progress In this paper, the preparation, modification and application of PTFE membranes were reviewed. The advantages and disadvantages of different processes for the preparation and modification of superhydrophobic PTFE membrane were summarized. According to the superhydrophobic modification principle of PTFE membrane and the molecular chemical structure of PTFE, two modification mechanisms of "not changing the molecular structure of PTFE" and "changing the molecular structure of PTFE" were analyzed. Based on practical cases, the early modification methods such as laser etching, ion irradiation and plasma etching are introduced one by one, and their shortcomings are analyzed. The super hydrophobic modification of PTFE further reduces the surface energy of the membrane, which can solve the problems of easy contamination, poor selective permeability and short service life. Finally, the application of super hydrophobic PTFE membrane in oil-water separation, membrane distillation, printing and dyeing wastewater treatment is introduced.

Conclusion and Prospect The preparation technology of superhydrophobic PTFE membrane was summarized into two types: "no change in the chemical structure of PTFE" and "change in the chemical structure of PTFE". The first method is relatively simple and economical, but because most of the bonding methods are physical bonding, its bonding strength is low, the superhydrophobicity cannot be maintained over time, and it is prone to secondary pollution. The second method is fast, easy to control the surface structure, and has good hydrophobicity retention, but the molecular structure of PTFE is destroyed, which will adversely affect the mechanical strength and chemical stability of the membrane. Subsequent development should be carried out from the following aspects. 1) The selection of environmentally friendly nanoparticles and the enhancement of partical bonding strength and uniformity should be extensively explored. Nanoparticles should be combined with the industrial production process of PTFE membrane, and the process of dual-directional stretching to prepare PTFE membrane should be added to form a superhydrophobic PTFE membrane in one step. 2) A mild and efficient surface construction method, which can reduce the damage to the PTFE membrane substrate as much as possible while obtaining super hydrophobicity should be developed to achieve the coexistence of functional performance and strength. 3) The density ratio between the crystalline state and the amorphous state of PTFE should be controlled during membrane making, and the surface energy of PTFE should be reduced by increasing the amorphous state density, so as to directly realize the super hydrophobic of PTFE membrane.

Key words: separation membrane material, polytetrafluoroethylene membrane, superhydrophobic, modification method, separation technique

中图分类号: 

  • TQ342.711
[1] GAO H, MAO Y P, WANG W L, et al. ZIF-8 based dual scale superhydrophobic membrane for membrane distillation[J]. Desalination, 2023. DOI:10.1016/j.desal.2023.116373.
[2] JIANG D, FAN P, GONG D, et al. High-temperature imprinting and superhydrophobicity of micro/nano surface structures on metals using molds fabricated by ultrafast laserablation[J]. Journal of Materials Processing Technology, 2016, 236: 56-63.
[3] XIONG Z, LAI Q Y, LU J Y, et al. Silanization enabled superhydrophobic PTFE membrane with antiwetting and antifouling properties for robust membrane distillation[J]. Journal of Membrane Science, 2023. DOI:10.1016/j.memsci.2023.121546.
[4] SHIRTCLIFFE N J, MCHALE G, NEWTONE M, et al. Superhydrophobic copper tubes with possible flow enhancement and drag reduction[J]. ACS Applied Materials & Interfaces, 2009(1): 1316-1323.
[5] WANG Y F, KONG A Q, YANG L, et al. Superhydrophobic wrinkled skin grown on polypropylene membranes enhances oil-water emulsions separation[J]. Journal of Environmental Chemical Engineering, 2023. DOI:10.1016/j.jece.2023.110247.
[6] YANG K, PENG Q Y, VENKATARAMAN, et al. Hydrophobicity, water moisture transfer and breathability of PTFE-coated viscose fabrics prepared by electrospraying technology and sintering process[J]. Progress in Organic Coatings, 2022. DOI:10.1016/j.porgcoat.2022.106775.
[7] 徐玉康, 朱尚, 靳向煜. 聚四氟乙烯耐腐蚀过滤材料结构特征及发展趋势[J]. 纺织学报, 2017, 38(8): 161-171.
XU Yukang, ZHU Shang, JIN Xiangyi. Structure and development of polytetraflu-oroethylene anti-corrosion filtration materials[J]. Journal of Textile Research, 2017, 38(8): 161-171.
[8] GUO X M, YAO Y Y, ZHU P X, et al. Preparation of porous PTFE/C composite foam and its application in gravity-driven oil-water separation[J]. Polymer International, 2022, 71: 874-883.
[9] 黄启舒, 许里杰. 超疏水自清洁涂料的研究与应用现状[J]. 化工新型材料, 2020, 48(5): 219-222.
HUANG Qishu, XU Lijie. Research and application situation of superhydropholic self-cleaning coating[J]. New Chemical Materials, 2020, 48(5): 219-222.
[10] LI M, CHEN F, LIU C, et al. Electrospun fibrous PTFE supported ZnO for oil-water separation[J]. Journal of Inorganic and Organometallic Polymers and Materials, 2019, 29: 1738-1745.
doi: 10.1007/s10904-019-01135-x
[11] XU M, CHENG J, DU X, et al. Amphiphobic electrospun PTFE nanofibrous membranes for robust membrane distillation process[J]. Journal of Membrane Science, 2022. DOI:10.1016/j.memsci.2021.119876.
[12] JU J, FEJJARI K, CHENG Y, et al. Engineering hierarchically structured superhydrophobic PTFE/POSS nanofibrous membranes for membrane distillation[J]. Desalination, 2020. DOI:10.1016/j.desal.2020.114481.
[13] 高凯华, 茆羊羊, 刘公平, 等. 疏水石墨烯膜的制备及其用于膜蒸馏脱盐的研究进展[J]. 化工进展, 2020, 39(6): 2135-2144.
doi: 10.16085/j.issn.1000-6613.2020-0063
GAO Kaihua, MAO Yangyang, LIU Gongping, et al. Progresses in preparation of hydrophobic graphene-based membranes and their application for membrane distillation desalination[J]. Chemical Industry and Engineering Progress, 2020, 39(6): 2135-2144.
doi: 10.16085/j.issn.1000-6613.2020-0063
[14] 张晨阳, 李新梅, 刘伟斌, 等. PVA与PTFE质量比对PTFE/PVA纤维膜形貌和性能的影响[J]. 化工新型材料, 2023, 51(8): 90-94.
ZHANG Chenyang, LI Xinmei, LIU Weibin, et al. Effects of the mass ratios of PVA and PTFE on the morphology and properties of PTFE/PVA fiber membranes[J]. New Chemical Materials, 2023, 51(8): 90-94.
[15] HUANG Y, XIAO C F, HUANG Q L, et al. Robust preparation of tubular PTFE/FEP ultrafine fibers-covered porous membrane by electrospinning for continuous highly effective oil/water separation[J]. Journal of Membrane Science, 2018, 568: 87-96.
[16] PANG H, TIAN K, LI Y, et al. Super-hydrophobic PTFE hollow fiber membrane fabricated by electrospinning of Pullulan/PTFE emulsion for membrane deamination[J]. Separation and Purification Technology, 2021. DOI:10.1016/j.seppur.2020.118186.
[17] PARK E J, KIM D H, LEE J H, et al. Fabrication of a superhydrophobic and oleophobic PTFE membrane: an application to selective gas permeation[J]. Materials Research Bulletin, 2016, 83: 88-95.
[18] ZHAN Y L, RUAAN M, LI W, et al. Fabrication of anisotropic PTFE superhydrophobic surfaces using laser microprocessing and their self-cleaning and anti-icing behavior[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2017, 535: 8-15.
[19] ZHOU S S, HU Y Y, HUANG Y, et al. Preparation of polytetrafluoroethylene superhydrophobic materials by femtosecond laser processing technology[J]. Ploymers, 2023. DOI:10.3390/polym16010043.
[20] YIN K, DU H, LUO Z, et al. Multifunctional micro/nano-patterned PTFE near-superamphiphobic surfaces achieved by a femtosecond laser[J]. Surface and Coatings Technology, 2018, 345: 53-60.
[21] FANG Y, YONG J, CHEN F, et al. Durability of the tunable adhesive superhydrophobic PTFE surfaces for harsh environment applications[J]. Applied Physics A, 2016, 122: 1-7.
[22] GARG S K, DATTA D P, GHATAK J, et al. Tunable wettability of Si through surface energy engineering by nanopatterning[J]. RSC Advances, 2016, 6(54): 48550-48557.
[23] PACHCHIGAR V, PARIDA B K, AUGUSTINE S, et al. Comparative wettability study of bulk and thin film of polytetrafluoroethylene after low energy ion irradiation[J]. Thin Solid Films, 2023. DOI:10.1016/j.tsf.2023.139888.
[24] 王晓光, 朱晓明, 尹延昭, 等. 离子体刻蚀工艺的优化研究[J]. 中国新技术新产品, 2010(14): 28.
WANG Xiaoguang, ZHU Xiaoming, YIN Yanzhao, et al. Optimization of plasma etching technology[J]. China New Technologies and Products, 2010(14): 28.
[25] WASHO B D. Highly nonwettable surfaces via plasma polymer vapor deposition[J]. Polymers in Electronics, 1982, 47: 69-72.
[26] PACHCHIGAR V, GAUR U K, TV A, et al. Hydrophobic to superhydrophobic and hydrophilic transitions of Ar plasma-nanostructured PTFE surfaces[J]. Plasma Processes and Polymers, 2022. DOI:10.1002/ppap.202200037.
[27] GAO S J, SHI Z, ZHANG W B, et al. Photoinduced superwetting single-walled carbon nanotube/TiO2 ultrathin network films for ultrafast separation of oil-in-water emulsions[J]. ACS Nano, 2014, 8(6): 6344-6352.
[28] HUANG K T, YEH S B, HUANG C J. Surface modification for superhydrophilicity and underwater superoleophobicity: applications in antifog, underwater self-cleaning, and oil-water separation[J]. ACS Applied Materials & Interfaces, 2015, 7(38): 21021-21029.
[29] ZHANG W, SHI Z, ZHANG F, et al. Superhydrophobic and superoleophilic PVDF membranes for effective separation of water-in-oil emulsions with high flux[J]. Advanced Materials, 2013, 25(14): 2071-2076.
[30] DU C, WANG J, CHEN Z, et al. Durable superhydrophobic and superoleophilic filter paper for oil-water separation prepared by a colloidal deposition method[J]. Applied Surface Science, 2014, 313: 304-310.
[31] QIN Z L, XIANG H Q, LIU J G, et al. High-performance oil-water separation polytetrafluoroethylene membranes prepared by picosecond laser direct ablation and drilling[J]. Materials & Design, 2019. DOI:10.1016/j.matdes.2019.108200.
[32] YU X, ZHU W, LI Y, et al. Dual-bioinspired fabrication of Janus Micro/nano PDA-PTFE/TiO2 membrane for efficient oil-water separation[J]. Separation and Purification Technology, 2024. DOI:10.1016/j.seppur.2023.125201.
[33] CHAI J, WANG G, ZHANG A, et al. Robust polytetrafluoroethylene (PTFE) nanofibrous membrane achieved by shear-induced in-situ fibrillation for fast oil/water separation and solid removal in harsh solvents[J]. Chemical Engineering Journal, 2023. DOI:10.1016/j.cej.2023.141971.
[34] IZQUIERDO-GIL M A, ABILDSKOV J, JONSSON G. The use of VMD data/model to test different thermodynamic models for vapour-liquid equilibrium[J]. Journal of Membrane Science, 2004, 239(2): 227-241.
[35] LEE E J, DEKA B J, AN A K. Reinforced superhydrophobic membrane coated with aerogel-assisted polymeric microspheres for membrane distillation[J]. Journal of Membrane Science, 2019, 573: 570-578.
[36] HUANG J, CAI S W, GAO Y, et al. Superhydrophobic polytetrafuoroethylene hollow fiber membrane based on fuoroalkylsilanes for vacuum membrane distillation[J]. Desalination and Water Treatment, 2022, 277: 21-29.
[37] KIM S, HEATH D E, KENTISH S E. Robust and superhydrophobic PTFE membranes with crosshatched nanofibers for membrane distillation and carbon dioxide strip[J]. Advanced Materials Interfaces, 2022. DOI:10.1002/admi.202200786.
[38] LI Y, FAN T, CUI W, et al. Harsh environment-tolerant and robust PTFE@ZIF-8 fibrous membrane for efficient photocatalytic organic pollutants degradation and oil/water separation[J]. Separation and Purification Technology, 2023, 306: 1-8.
[39] HUANG Y, HUANG Q, XIAO C, et al. Supported electrospun ultrafine fibrous poly (tetrafluoroethylene)/ZnO porous membranes and their photocatalytic applications[J]. Chemical Engineering & Technology, 2018, 41(3): 656-662.
[40] LI M, SCOTT K. A polymer electrolyte membrane for high temperature fuel cells to fit vehicle applications[J]. Electrochimica Acta, 2010, 55(6): 2123-2128.
[1] 邵明军, 蹇玉兰, 唐唯, 柴希娟, 万辉, 解林坤. 涤纶织物表面耐久超疏水涂层制备及其水油分离性能[J]. 纺织学报, 2024, 45(04): 142-150.
[2] 王露砚, 张彩宁, 赵倩倩, 马志豪, 王煦漫. 紫外光/氨气双重响应超疏水棉织物的制备及其性能[J]. 纺织学报, 2023, 44(11): 160-166.
[3] 柳敦雷, 陆佳颖, 薛甜甜, 樊玮, 刘天西. 超疏水隔热聚酯纳米纤维/二氧化硅气凝胶复合膜的制备及其性能[J]. 纺织学报, 2023, 44(07): 18-25.
[4] 赵伦玉, 隋晓锋, 毛志平, 李卫东, 冯雪凌. 气凝胶材料在纺织品上的应用研究进展[J]. 纺织学报, 2022, 43(12): 181-189.
[5] 乔路阳, 吕巧莉, 胡乾恒, 王成龙, 郑今欢. 改性羰基铁粉制备及其在蓝光固化磁控超疏水薄膜中的应用[J]. 纺织学报, 2022, 43(12): 88-95.
[6] 方寅春, 陈吕鑫, 李俊伟. 阻燃超疏水涤/棉混纺织物的制备及其性能[J]. 纺织学报, 2022, 43(11): 113-118.
[7] 高强, 范浩军, 颜俊, 陈玉国, 郑萍. 三维超疏水超细纤维绒面革的仿生构建[J]. 纺织学报, 2022, 43(10): 126-132.
[8] 谢爱玲, 乐昱含, 艾馨, 王亚辉, 王义容, 陈新彭, 陈国强, 邢铁玲. 茶多酚改性超疏水涤纶织物制备及其在油水分离中的应用[J]. 纺织学报, 2022, 43(02): 162-170.
[9] 许仕林, 杨世玉, 张亚茹, 胡柳, 胡毅. 热塑性聚氨酯/特氟龙无定形氟聚物超疏水纳米纤维膜制备及其性能[J]. 纺织学报, 2021, 42(12): 42-42.
[10] 李维斌, 张程, 刘军. 超疏水棉织物制备及其在油水过滤分离中应用[J]. 纺织学报, 2021, 42(08): 109-114.
[11] 郝尚, 谢源, 翁佳丽, 张维, 姚继明. 溶解刻蚀辅助构建棉织物超疏水表面[J]. 纺织学报, 2021, 42(02): 168-173.
[12] 陈诗萍, 陈旻, 魏岑, 王富军, 王璐. 医用防护服的构效特点及其研发趋势[J]. 纺织学报, 2020, 41(08): 179-187.
[13] 陈千, 廖振, 徐明, 朱亚伟. 等离子体处理对聚四氟乙烯膜粘接性能的影响[J]. 纺织学报, 2020, 41(08): 15-21.
[14] 徐林, 任煜, 张红阳, 吴双全, 李雅, 丁志荣, 蒋文雯, 徐思峻, 臧传锋. 涤纶织物表面TiO2/氟硅烷超疏水层构筑及其性能[J]. 纺织学报, 2019, 40(12): 86-92.
[15] 盛宇, 徐丽慧, 孟云, 沈勇, 王黎明, 潘虹. 用SiO2/TiO2复合气凝胶制备超疏水光催化防紫外线织物[J]. 纺织学报, 2019, 40(07): 90-96.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!