纺织学报 ›› 2025, Vol. 46 ›› Issue (01): 227-237.doi: 10.13475/j.fzxb.20240304702
旋湘桃1, 张辉1(), 车秋玲2, 魏乾阳3, 张劲峰3, 王毅4
XUAN Xiangtao1, ZHANG Hui1(), CHE Qiuling2, WEI Qianyang3, ZHANG Jinfeng3, WANG Yi4
摘要:
为开发具有高效自清洁性能的织物,以满足人们对便捷、环保纺织品的需求,介绍了自清洁织物主要通过超疏水表面或光催化活性2种方式实现自清洁的原理,分析了自清洁织物的最新材料,综述了浸涂法、喷涂法、溶胶-凝胶法、原位聚合法、表面蚀刻法、层层自组装法和溶剂热法等制备超疏水自清洁织物的方法,以及水热/溶剂热合成法、浸涂法、沉积法、超声合成法、溶胶-凝胶法、微波辐照法和等离子体处理技术等制备光催化自清洁织物的方法。总结了国内外测试自清洁性能及其耐久性的常用方法,为织物自清洁性能评价提供依据。
中图分类号:
[1] | ABOU ELMAATY T M, ELSISI H, ELSAYAD G, et al. Recent advances in functionalization of cotton fabrics with nanotechnology[J]. Polymers, 2022.DOI:10.3390/polym14204273. |
[2] | AGRAWAL N, LOW P S, TAN J S J, et al. Durable easy-cleaning and antibacterial cotton fabrics using fluorine-free silane coupling agents and CuO nanoparticles[J]. Nano Materials Science, 2020, 2(3): 281-291. |
[3] | ATWAH A A, KHAN M A. Influence of microscopic features on the self-cleaning ability of textile fabrics[J]. Textile Research Journal, 2023, 93(1/2): 450-467. |
[4] | 陈海家, 王矿, 蒋文雯, 等. 负载焦硅酸银/碳纳米管光催化自清洁棉织物的制备和表征[J]. 纺织导报, 2018(9): 75-78. |
CHEN Haijia, WANG Kuang, JIANG Wenwen, et al. Preparation and characterization of self-cleaning cotton fabrics photocatalyzed by supported silver pyrosilicate/carbon nanotubes[J]. China Textile Leader, 2018(9): 75-78. | |
[5] | YU M, WANG Z, LIU H, et al. Laundering durability of photocatalyzed self-cleaning cotton fabric with TiO2 nanoparticles covalently immobilized[J]. ACS Applied Materials & Interfaces, 2013, 5(9): 3697-3703. |
[6] | ASHRAF M, CHAMPAGNE P, CAMPAGNE C, et al. Study the multi self-cleaning characteristics of ZnO nanorods functionalized polyester fabric[J]. Journal of Industrial Textiles, 2016, 45(6): 1440-1456. |
[7] | 万晶, 徐丽慧, 孟云, 等. 超疏水光催化协同自清洁表面研究进展[J]. 人工晶体学报, 2019, 48(9): 1754-1760, 1767. |
WAN Jing, XU Lihui, MENG Yun, et al. Research progress of superhydrophobic photocatalysis collaborative self-cleaning surfaces[J]. Journal of Synthetic Crystals, 2019, 48(9): 1754-1760, 1767. | |
[8] | PEETERS H, LENAERTS S, VERBRUGGEN S W. Benchmarking the photocatalytic self-cleaning activity of industrial and experimental materials with ISO 27448: 2009[J]. Materials, 2023.DOI:10.3390/mal16031119. |
[9] | LIU K S, CAO M Y, FUJISHIMA A, et al. Bio-inspired titanium dioxide materials with special wettability and their applications[J]. Chemical Reviews, 2014, 114(19): 10044-10094. |
[10] | BARTHLOTT W, NEINHUIS C. Purity of the sacred lotus, or escape from contamination in biological surfaces[J]. Planta, 1997, 202: 1-8. |
[11] | WENZEL R N. Resistance of solid surfaces to wetting by water[J]. Industrial & Engineering Chemistry, 1936, 28(8): 988-994. |
[12] | CASSIE A B D, BAXTER S. Wettability of porous surfaces[J]. Transactions of the Faraday Society, 1944(40): 546-551. |
[13] | FENG L, LI S, LI Y, et al. Super-hydrophobic surfaces: from natural to artificial[J]. Advanced materials, 2002, 14(24): 1857-1860. |
[14] | LI Shuhui, HUANG Jianying, LAI Yuekun. Advanced progress of green textile with special wettability[J]. Chemical Journal of Chinese Universities, 2021(42): 1043-1060. |
[15] | WANG S, LIU K, YAO X, et al. Bioinspired surfaces with superwettability: new insight on theory, design, and applications[J]. Chemical Reviews, 2015, 115(16): 8230-8293. |
[16] | KHAN M Z, MILITKY J, PETRU M, et al. Recent advances in superhydrophobic surfaces for practical applications: a review[J]. European Polymer Journal, 2022. DOI:10.1016/j.eurpolymj.2022.111481. |
[17] | VENNE C, VU N N, LADHARI S, et al. One-pot preparation of superhydrophobic polydimethylsiloxane-coated cotton via water/oil/water emulsion approach for enhanced resistance to chemical and bacterial adhe-sion[J]. Progress in Organic Coatings, 2023. DOI:10.1016/j.porgcoat.2022.107249. |
[18] | 郭晓丽. 真丝织物洗涤方法及工艺研究[D]. 北京: 北京服装学院, 2019: 3-10. |
GUO Xiaoli. Study on washing method and technology of silk fabric[D]. Beijing: Beijing Institute of Fashion Technology, 2019: 3-10. | |
[19] | BAL G, THAKUR A. Distinct approaches of removal of dyes from wastewater: a review[J]. Materials Today: Proceedings, 2022(50): 1575-1579. |
[20] | MOLLICK S, REPON M R, HAJI A, et al. Progress in self-cleaning textiles: parameters, mechanism and applications[J]. Cellulose, 2023(30):10633-10680. |
[21] | ARORA I, CHAWLA H, CHANDRA A, et al. Advances in the strategies for enhancing the photocatalytic activity of TiO2: conversion from UV-light active to visible-light active photocatalyst[J]. Inorganic Chemistry Communications, 2022. DOI:10.1016/j.inoche.2022.109700. |
[22] | 陈荣轩, 孙辉, 于斌. N-TiO2/聚丙烯复合熔喷非织造材料的制备及其光催化性能[J]. 纺织学报, 2024, 45(3): 137-147. |
CHEN Rongxuan, SUN Hui, YU Bin. Preparation and photocatalytic properties of N-TiO2/polypropylene melt-blown nonwovens[J]. Journal of Textile Research, 2024, 45(3): 137-147. | |
[23] | CHENG Y T, RODAK D E, WONG C A, et al. Effects of micro-and nano-structures on the self-cleaning behaviour of lotus leaves[J]. Nanotechnology, 2006, 17(5): 1359-1362. |
[24] | KARST D, YANG Y. Potential advantages and risks of nanotechnology for textiles[J]. AATCC Review, 2006, 6(3):44-48. |
[25] | MEILERT K T, LAUB D, KIWI J. Photocatalytic self-cleaning of modified cotton textiles by TiO2 clusters attached by chemical spacers[J]. Journal of Molecular Catalysis A: Chemical, 2005, 237(1/2): 101-108. |
[26] | QI K, CHEN X, LIU Y, et al. Facile preparation of anatase/SiO2 spherical nanocomposites and their application in self-cleaning textiles[J]. Journal of Materials Chemistry, 2007, 17(33): 3504-3508. |
[27] | WANG R H, WANG X W, XIN J H. Advanced visible-light-driven self-cleaning cotton by Au/TiO2/SiO2 photocatalysts[J]. ACS Applied Materials & Interfaces, 2010, 2(1): 82-85. |
[28] | ELLINAS K, TSEREPI A, GOGOLIDES E. Durable superhydrophobic and superamphiphobic polymeric surfaces and their applications: a review[J]. Advances in Colloid and Interface Science, 2017, 250: 132-157. |
[29] | CAO C, GE M, HUANG J, et al. Robust fluorine-free superhydrophobic PDMS-ormosil@fabrics for highly effective self-cleaning and efficient oil-water separ-ation[J]. Journal of Materials Chemistry A, 2016, 4(31): 12179-12187. |
[30] | BASHIRI Rezaie A, MONTAZER M, MAHMOUDI Rad M. Scalable, eco-friendly and simple strategy for nano-functionalization of textiles using immobilized copper-based nanoparticles[J]. Clean Technologies and Environmental Policy, 2018, 20: 2119-2133. |
[31] | COTE A P, BENIN A I, OCKWIG N W, et al. Porous, crystalline, covalent organic frameworks[J]. Science, 2005, 310(5751): 1166-1170. |
[32] | ZHUANG Z, SHI H, KANG J, et al. An overview on covalent organic frameworks: synthetic reactions and miscellaneous applications[J]. Materials Today Chemistry, 2021. DOI:10.1016/j.mtchem.2021.100573. |
[33] | YUAN H, LU Z, LI Y, et al. Application of imine covalent organic frameworks in sample pretreatment[J]. Chinese Journal of Chromatography, 2022, 40(2): 109-122. |
[34] | JIANG Y, LIU C, LI Y, et al. Stainless-steel-net-supported superhydrophobic COF coating for oil/water separation[J]. Journal of Membrane Science, 2019. DOI:10.1016/J.MEMSCI.2019.117177. |
[35] | LIU Y, LI W, YUAN C, et al. Two-dimensional fluorinated covalent organic frameworks with tunable hydrophobicity for ultrafast oil-water separation[J]. Angewandte Chemie International Edition, 2022. DOI:10.1002/anie.202113348. |
[36] | HAN N, ZHANG Z, GAO H, et al. Superhydrophobic covalent organic frameworks prepared via pore surface modifications for functional coatings under harsh conditions[J]. ACS Applied Materials & Interfaces, 2019, 12(2): 2926-2934. |
[37] | YU W, ZHANG J, XIONG Y, et al. Construction of UiO-66-NH2/BiOBr heterojunctions on carbon fiber cloth as macroscale photocatalyst for purifying anti-biotics[J]. Journal of Cleaner Production, 2023. DOI: 10.1016/j.jclepro.2023.137603. |
[38] | WANG J, QIN J, YANG C, et al. Effect of ligand substitution in UiO-66 metal-organic frameworks on the photocatalytic oxidation of acetaldehyde[J]. Chemosphere, 2023. DOI:10.1016/j.chemosphere.2023.139841. |
[39] | WEI L, ZHANG Y, JIANG J, et al. Modified UiO-66-Br microphotocatalyst with high electron mobility enhances tetracycline degradation[J]. Langmuir, 2023, 39(10): 3678-3691. |
[40] | 邵明军, 蹇玉兰, 唐唯, 等. 涤纶织物表面耐久超疏水涂层制备及其水油分离性能[J]. 纺织学报, 2024, 45(4): 142-150. |
SHAO Mingjun, JIAN Yulan, TANG Wei, et al. Preparation of durable superhydrophobic coatings on polyester fabric surfaces and its water-oil separation properties[J]. Journal of Textile Research, 2024, 45(4): 142-150. | |
[41] | AFZAL S, DAOUD W A, LANGFORD S J. Superhydrophobic and photocatalytic self-cleaning cotton[J]. Journal of Materials Chemistry A, 2014, 2(42): 18005-18011. |
[42] | AHMAD N, RASHEED S, AHMED K, et al. Facile two-step functionalization of multifunctional superhydrophobic cotton fabric for UV-blocking, self cleaning, antibacterial, and oil-water separation[J]. Separation and Purification Technology, 2023. DOI:10.1016/j.seppur.2022.122626. |
[43] | JIANG C, LIU W, YANG M, et al. Robust multifunctional superhydrophobic fabric with UV induced reversible wettability, photocatalytic self-cleaning property, and oil-water separation via thiol-ene click chemistry[J]. Applied Surface Science, 2019, 463: 34-44. |
[44] | GAO Y N, WANG Y, YUE T N, et al. Multifunctional cotton non-woven fabrics coated with silver nanoparticles and polymers for antibacterial, superhydrophobic and high performance microwave shielding[J]. Journal of Colloid and Interface Science, 2021, 582: 112-123. |
[45] | ELZAABALAWY A, MEGUID S A. Development of novel superhydrophobic coatings using siloxane-modified epoxy nanocomposites[J]. Chemical Engineering Journal, 2020. DOI:10.1016/j.cej.2020.125403. |
[46] | SHANG Q, LIU C, CHEN J, et al. Sustainable and robust superhydrophobic cotton fabrics coated with castor oil-based nanocomposites for effective oil-water separation[J]. ACS Sustainable Chemistry & Engineering, 2020, 8(19): 7423-7435. |
[47] | LIN D, ZENG X, LI H, et al. One-pot fabrication of superhydrophobic and flame-retardant coatings on cotton fabrics via sol-gel reaction[J]. Journal of Colloid and Interface Science, 2019, 533: 198-206. |
[48] | 韦玉辉, 郑晨, 程尔骕, 等. 光催化自清洁芳纶织物的制备及其性能[J]. 纺织学报, 2023, 44(5): 171-176. |
WEI Yuhui, ZHENG Chen, CHENG Erxiao, et al. Preparation and properties of photocatalytic self-cleaning aramid fabrics[J]. Journal of Textile Research, 2023, 44(5): 171-176. | |
[49] | ZHU R, LIU M, HOU Y, et al. Biomimetic fabrication of janus fabric with asymmetric wettability for water purification and hydrophobic/hydrophilic patterned surfaces for fog harvesting[J]. ACS Applied Materials & Interfaces, 2020, 12(44): 50113-50125. |
[50] | CHENG Y, ZHU T, LI S, et al. A novel strategy for fabricating robust superhydrophobic fabrics by environmentally-friendly enzyme etching[J]. Chemical Engineering Journal, 2019, 355: 290-298. |
[51] | 郝丽芬, 杨娇娇, 许伟, 等. 织物表面耐久性超疏水涂层的组装及性能研究[J]. 化工新型材料, 2020, 48(8): 121-124. |
HAO Lifen, YANG Jiaojiao, XU Wei, et al. Study on assembly and properties of durable superhydrophobic coating on fabric surface[J]. New Chemical Materials, 2020, 48(8): 121-124. | |
[52] | LI W, ZHANG H, CHEN P, et al. One-step hydrothermal deposition of Ag-doped g-C3N4-TiO2 nanocomposites on cotton fabric surface with enhanced photocatalytic activity[J]. Fibers and Polymers, 2023, 24(2): 575-588. |
[53] | 陈文豆, 张辉, 陈天宇, 等. 二氧化钛水热改性涤/棉混纺织物的自清洁性能[J]. 纺织学报, 2020, 41(7): 122-128. |
CHEN Wendou, ZHANG Hui, CHEN Tianyu, et al. Self-cleaning properties of titanium dioxide hydrothermal modified polyester/cotton blended fabrics[J]. Journal of Textile Research, 2020, 41(7): 122-128. | |
[54] | BIAN L, DONG Y, JIANG B. Simplified creation of polyester fabric supported Fe-based MOFs by an industrialized dyeing process: conditions optimization, photocatalytics activity and polyvinyl alcohol removal[J]. Journal of Environmental Sciences, 2022, 116: 52-67. |
[55] | EMAM H E, ABDELHAMID H N, ABDELHAMEED R M. Self-cleaned photoluminescent viscose fabric incorporated lanthanide-organic framework (Ln-MOF)[J]. Dyes and Pigments, 2018, 159: 491-498. |
[56] | IBRAHIM M M, MEZNI A, EL-SHESHTAWY H S, et al. Direct Z-scheme of Cu2O/TiO2 enhanced self-cleaning, antibacterial activity, and UV protection of cotton fiber under sunlight[J]. Applied Surface Science, 2019, 479: 953-962. |
[57] | YUZER B, AYDIN M I, CON A H, et al. Photocatalytic, self-cleaning and antibacterial properties of Cu (II) doped TiO2[J]. Journal of Environmental Management, 2022. DOI:10.1016/j.jenvman.2021.114023. |
[58] | MATEESCU A O, MATEESCU G, BURDUCEA I, et al. Textile materials treatment with mixture of TiO2: N and SiO2 nanoparticles for improvement of their self-cleaning properties[J]. Journal of Natural Fibers, 2022, 19(7): 2443-2456. |
[59] | QIAN T, ZHANG Y, CAI J, et al. Decoration of amine functionalized zirconium metal organic framework/silver iodide heterojunction on carbon fiber cloth as a filter-membrane-shaped photocatalyst for degrading anti-biotics[J]. Journal of Colloid and Interface Science, 2021, 603: 582-593. |
[60] | LAM S M, LIM C L, SIN J C, et al. Facile synthesis of MnO2/ZnO coated on cotton fabric for boosted antimicrobial, self-cleaning and photocatalytic activities under sunlight[J]. Materials Letters, 2021. DOI:10.1016/j.matlet.2021.130818. |
[61] | PAYVANDY P, ZOHOORI S, BEKRANI M. Antibacterial, self-cleaning and UV blocking of wool fabric coated with nano Ce/ZnO and Ce/TiO2[J]. Indian Journal of Fibre & Textile Research (IJFTR), 2021, 46(1): 57-62. |
[62] | ZHAO H, WANG S, ZHOU M, et al. Self-cleaning and sun-resistant photocatalytic polyester fabrics shielding with Fe-g-C3N4/TiO2 by sol-gel method[J]. Journal of Materials Science: Materials in Electronics, 2022, 33(32): 24706-24717. |
[63] | TANASE M A, SOARE A C, OANCEA P, et al. Facile in situ synthesis of ZnO flower-like hierarchical nanostructures by the microwave irradiation method for multifunctional textile coatings[J]. Nanomaterials, 2021.DOI:10.3390/nan011102574. |
[64] | EL-HAMSHARY H, EL-NAGGAR M E, KHATTAB T A, et al. Preparation of multifunctional plasma cured cellulose fibers coated with photo-induced nanocomposite toward self-cleaning and antibacterial textiles[J]. Polymers, 2021.DOI:10.3390/polym13213664. |
[65] | LATTHE S S, SUTAR R S, KODAG V S, et al. Self-cleaning superhydrophobic coatings: potential industrial applications[J]. Progress in Organic Coatings, 2019, 128: 52-58. |
[66] | FOORGINEZHAD S, ZERAFAT M M. Fabrication of stable fluorine-free superhydrophobic fabrics for anti-adhesion and self-cleaning properties[J]. Applied Surface Science, 2019, 464: 458-471. |
[67] | ZHU R, LIU M, HOU Y, et al. One-pot preparation of fluorine-free magnetic superhydrophobic particles for controllable liquid marbles and robust multifunctional coatings[J]. ACS Applied Materials & Interfaces, 2020, 12(14): 17004-17017. |
[68] | CHAUHAN P, KUMAR A, BHUSHAN B. Self-cleaning, stain-resistant and anti-bacterial superhydrophobic cotton fabric prepared by simple immersion technique[J]. Journal of Colloid and Interface Science, 2019, 535: 66-74. |
[69] | TUDU B K, SINHAMAHAPATRA A, KUMAR A. Surface modification of cotton fabric using TiO2 nanoparticles for self-cleaning, oil-water separation, antistain, anti-water absorption, and antibacterial properties[J]. ACS Omega, 2020, 5(14): 7850-7860. |
[70] | LIU H, LI Q, BU Y, et al. Stretchable conductive nonwoven fabrics with self-cleaning capability for tunable wearable strain sensor[J]. Nano Energy, 2019. DOI:10.1016/j.nanoen.2019.104143. |
[71] | ANJUM A S, SUN K C, ALI M, et al. Fabrication of coral-reef structured nano silica for self-cleaning and super-hydrophobic textile applications[J]. Chemical Engineering Journal, 2020. DOI:10.1016/j.cej.2020.125859. |
[72] | ROY S, ZHAI L, KIM J W, et al. A novel approach of developing sustainable cellulose coating for self-cleaning-healing fabric[J]. Progress in Organic Coatings, 2020. DOI:10.1016/j.porgcoat.2019.105500. |
[73] | LI R, LI Y, JIA X, et al. In-situ grown of NiAl-LDHs for self-healing fabric with flame-retardant, UV-protection and antifouling performance[J]. Ceramics International, 2023, 49(9): 14635-14644. |
[1] | 王心雨, 郭明明, 张乐乐, 郑伟杰, AMJAD Farooq, 王宗乾. 耐久性抗菌超疏水棉织物的制备及其性能[J]. 纺织学报, 2024, 45(11): 170-177. |
[2] | 邵明军, 蹇玉兰, 唐唯, 柴希娟, 万辉, 解林坤. 涤纶织物表面耐久超疏水涂层制备及其水油分离性能[J]. 纺织学报, 2024, 45(04): 142-150. |
[3] | 谭家玲, 刘佳音, 于伟东, 殷允杰, 王潮霞. 基于SiO2微胶囊的多色谱温敏变色棉织物制备及其性能[J]. 纺织学报, 2023, 44(07): 167-174. |
[4] | 刘新华, 刘海龙, 方寅春, 严鹏, 侯广开. 聚乙烯亚胺/植酸层层自组装阻燃涤/棉混纺织物制备及其性能[J]. 纺织学报, 2021, 42(11): 103-109. |
[5] | 竺哲欣, 马晓吉, 夏林, 吕汪洋, 陈文兴. 氯离子协同增强十六氯铁酞菁/聚丙烯腈复合纳米纤维光催化降解性能[J]. 纺织学报, 2021, 42(05): 9-15. |
[6] | 马君志, 葛红, 王冬, 付少海. 溶胶-凝胶法改性阻燃粘胶纤维的制备及其性能[J]. 纺织学报, 2021, 42(01): 10-15. |
[7] | 张艳艳, 詹璐瑶, 王培, 耿俊昭, 付飞亚, 刘向东. 用无机纳米粒子制备耐久性抗菌棉织物的研究进展[J]. 纺织学报, 2020, 41(11): 174-180. |
[8] | 刘晋旭, 刘鹏清. 织物阻燃表面处理技术研究进展[J]. 纺织学报, 2020, 41(10): 178-187. |
[9] | 胡铖烨, 缪润伍, 韩潇, 洪剑寒, GIL Ignacio. 聚乙烯醇对芳纶复合纱聚苯胺导电层耐久性影响[J]. 纺织学报, 2020, 41(04): 91-97. |
[10] | 常硕, 沈加加. 纺织品的石墨烯耐久功能整理研究进展[J]. 纺织学报, 2020, 41(02): 179-186. |
[11] | 田圣男 赵健 陈玲玲 吕仪 孙楠楠 王瑞雪 肖长发. 银/二氧化钛可见光催化自清洁织物的制备及其性能[J]. 纺织学报, 2018, 39(12): 89-94. |
[12] | 邓宗才 董智福. 高强聚丙烯纺粘针刺土工布的耐久性能[J]. 纺织学报, 2018, 39(11): 61-67. |
[13] | 高树珍 迟文锐 王兵兵 汪亮. 磷-氮耐氯阻燃整理剂的合成及其应用[J]. 纺织学报, 2018, 39(06): 101-105. |
[14] | 郭晓玲 张彤 曹陈华 王向东 符荣. 负载掺杂纳米TiO2耐久抗菌织物的制备与表征[J]. 纺织学报, 2017, 38(06): 163-168. |
[15] | 周惠敏 牛潇 李智勇 夏鑫. 前驱体比例对SnO2/TiO2纳米纤维晶型及光催化性能的影响[J]. 纺织学报, 2016, 37(05): 6-10. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 98
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 107
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Cited |
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Shared | ||||||||||||||||||||||||||||||||||||||||||||||||||
Discussed |
|