纺织学报 ›› 2025, Vol. 46 ›› Issue (01): 119-129.doi: 10.13475/j.fzxb.20240304801

• 染整工程 • 上一篇    下一篇

聚(环三磷腈-间苯三酚)微球的制备及其在聚酯阻燃中的应用

魏一1, 徐红1,2,3, 钟毅1,2,3, 张琳萍1,2,3, 毛志平1,2,3()   

  1. 1.东华大学 生态纺织教育部重点实验室, 上海 201620
    2.上海市纺织智能制造与工程一带一路国际联合实验室, 上海 201620
    3.国家先进印染技术创新中心 山东中康国创先进印染技术研究院有限公司, 山东 泰安 271000
  • 收稿日期:2024-03-20 修回日期:2024-05-20 出版日期:2025-01-15 发布日期:2025-01-15
  • 通讯作者: 毛志平(1969—),男,研究员,博士。主要研究方向为纺织品功能性整理及绿色环保助剂。E-mail:zhpmao@dhu.edu.cn
  • 作者简介:魏一(1998—),男,硕士生。主要研究方向为聚合物材料阻燃改性。
  • 基金资助:
    山东省重点研发计划(重大科技创新工程)项目(2021ZDPT03)

Synthesis and application of poly(cyclotriphosphazene-phloroglucinol) microspheres for enhancing flame retardancy of poly(ethylene terephthalate)

WEI Yi1, XU Hong1,2,3, ZHONG Yi1,2,3, ZHANG Linping1,2,3, MAO Zhiping1,2,3()   

  1. 1. Key Laboratory of Science & Technology of Eco-Textile, Ministry of Education, Donghua University, Shanghai 201620, China
    2. Shanghai Belt and Road Joint Laboratory of Textile Intelligent Manufacturing, Shanghai 201620, China
    3. Shandong Zhongkang Guochuang Research Institute of Advanced Dyeing & Finishing Technology Co., Ltd.,National Innovation Center of Advanced Dyeing & Finishing Technology, Taian, Shandong 271000, China
  • Received:2024-03-20 Revised:2024-05-20 Published:2025-01-15 Online:2025-01-15

摘要: 为提高聚对苯二甲酸乙二醇酯(PET)的阻燃性能,以六氯环三磷腈(HCCP)和间苯三酚为原料制备聚(环三磷腈-间苯三酚)(PCTP)微球,将PCTP微球作为阻燃剂通过物理共混方式添加到PET中制备PET/PCTP复合材料,并借助热重分析仪、锥形量热仪、热重-红外联用仪、极限氧指数仪和万能材料试验机等对PET/PCTP体系的热稳定性、阻燃性能、力学性能和阻燃机制进行分析。结果表明:向PET中添加质量分数为2% 的PCTP微球所制备的PET/PCTP2.0 复合材料,其极限氧指数(LOI)从24.4%增加到31.1%,且UL-94 达到V-0水平;相较于PET,PET/PCTP2.0复合材料的峰值热释放速率和总热释放量均显著降低(分别下降28.7%和17.7%),断裂强力下降13.3%,仍保持较好的力学性能;PET/PCTP复合材料在燃烧过程中可快速生成致密连续的炭层,隔绝可燃物内外的热量交换,同时释放出CO2等不燃气体,稀释PET基材周围的氧气从而实现阻燃。

关键词: 阻燃剂, 熔融共混, 聚对苯二甲酸乙二醇酯, 聚磷腈, 聚(环三磷腈-间苯三酚)微球

Abstract:

Objective Poly(ethylene terephthalate) (PET) is a semi-aromatic polyester known for its high performance and low cost. When considering fire safety requirements,the high flammability and serious melt-dripping behaviors during PET combustion restrict its application in many fields. In order to overcome these shortcomings, various types of flame retardants are added to PET. In recent years, various non-halogen flame retardants and high-temperature resistant materials have been developed using hexachlorocyclotriphosphazene(HCCP). The proposed method is put forward for addressing the issues of flammability and droplet melting of PET.

Methods HCCP and phloroglucinol as monomers were selected to synthesize highly crosslinked poly(cyclotriphosphazene-phloroglucinol) (PCTP) microspheres through the precipitation polymerization method. PCTP microspheres containing flame retardant elements P and N were incorporated into the PET matrix through melt blending. The influences on flame retardancy, mechanical properties, and the flame retardancy mechanism of PCTP/PET composite were investigated.

Results The synthesized PCTP microspheres was characterized. For PET, its temperature of initial decomposition (T5%) is 402 ℃. After incorporating various components of PCTP microspheres into PET, the T5% of the composites decreased to 390.9, 384.8, 379.2 and 365.6 ℃, respectively, indicating that PCTP microspheres can catalyze the thermal degradation of PET. PET has the lowest limit oxygen index (LOI value), and the UL-94 grade is the worst, with 24.4% and V-2, respectively. A significant phenomenon of melt dripping can be observed during combustion. After adding PCTP microsphere flame retardant, the flame retardant performance of the material was enhanced. Starting from PET/PCTP2.0(adding 2% of PCTP), all flame retardant composites with UL-94 grade achieved V-0, and the droplet phenomenon during combustion was minimized. By incorporating 2% PCTP microspheres into PET, the LOI value of the composite was rapidly increased to 31.1%, which is higher than that of PET (24.4%), and that of PET/PCTP5.0 (adding 5% of PCTP) increased to 33.9%. The peak heat release rate (PHRR) value of PET is very high at 775.24 kW/m2, and the total heat release (THR) value is 125.47 MJ/m2. Among these composites, PET/PCTP5.0 exhibited the best performance, showing a significant decrease in PHRR and THR values by 40% and 21.7%. Adding 2% of PCTP to PET, PCTP increased the release of CO2, while its concentration increased from 9.1% in PET to 14.0%. PET/PCTP composites released fewer combustible gases during pyrolysis, and the combustion process was slowed down by reducing the fuel. In addition, limiting CO release significantly reduced the toxicity of pyrolysis. Results showed that reducing the release of aromatic compounds not only postponed the availability of combustion sources, but also delayed the generation of smoke. Images of char residuces showed that with the increased PCTP content, the surface pores of char residuces in the composites became smaller, and the char layer became denser. PET exhibited the lowest area ratio of the D-band to the G-band (ID/IG value), at only 1.54. Compared to PET, the ID/IG values of various types of flame retardants were enhanced. The PET/PCTP composites proved that flame retardant elements phosphorus and nitrogen remained in the char residue.

Conclusion The polyphosphazene derivative microspheres (PCTP) were synthesized by precipitation polymerization using HCCP and phloroglucinol as raw materials, which have excellent thermal stability. Subsequently, it was melted and blended with PET to improve fire retardancy. By adding 2% of PCTP microspheres, the LOI value of PET/PCTP2.0 composite was increased to 31.1%, which also passed the V-0 of UL-94 and had good fire resistance. The LOI value of PET/PCTP5.0 increased to 33.9%. The cone calorimeter (CCT) results indicate that during the combustion process, the smoke and heat release of PET/PCTP composites is suppressed, while the char residues increases. The addition of PCTP hinders the pyrolysis of PET, thereby reducing the release of combustible gases such as CO and aromatic compounds. The role of PCTP in the condensed and gaseous phases is the reason for improving fire safety. Most importantly, the mechanical properties of the PET/PCTP2.0 composite are damaged by 13.3%, which is within the acceptable range. In summary, the PET/PCTP composites displayed comprehensive performance, offering great application value for the investigation of green flame-retardant PET.

Key words: flame retardant agent, melt blending, poly(ethylene terephthalate), polyphosphazene, poly (cyclotriphosphazene-phloroglucinol) microsphere

中图分类号: 

  • TS195.2

图1

PCTP微球的合成路线"

图2

不同放大倍数下PCTP微球的SEM照片"

图3

HCCP、间苯三酚和PCTP微球的化学结构和结晶结构"

图4

PET和PET/PCTP复合材料在氮气条件下的TG和DTG曲线"

表1

氮气条件下的热重参数"

样品名称 T5%/℃ Tmax/℃ 800 ℃时的残炭量/%
PCTP 334.6 532.6 64.65
PET 402.9 438.6 9.74
PET/PCTP1.0 390.9 443.4 14.60
PET/PCTP2.0 384.8 437.8 16.00
PET/PCTP3.0 379.2 423.3 17.10
PET/PCTP5.0 365.6 429.6 19.60

表2

PET及PET/PCTP复合材料的LOI值和垂直燃烧测试结果"

样品名称 LOI值/ 垂直燃烧测试
% 点燃脱脂棉 熔滴现象 UL-94等级
PET 24.4 严重 V-2
PET/PCTP1.0 29.7 严重 V-2
PET/PCTP2.0 31.1 缓慢 V-0
PET/PCTP3.0 32.7 缓慢 V-0
PET/PCTP5.0 33.9 缓慢 V-0

图5

PET和PET/PCTP复合材料的热释放速率、总热释放量和总烟释放量"

表3

PET和PET/PCTP复合材料的锥形量热结果"

样品名称 峰值热释放率/ 点火时 总热释放量/ 总烟释放
(kW·m-2) 间/s (MJ·m-2) 量/m2
PET 775.24 67 125.47 13.53
PET/PCTP1.0 606.93 66 112.45 12.55
PET/PCTP2.0 553.10 61 103.20 12.23
PET/PCTP3.0 494.63 61 96.79 11.81
PET/PCTP5.0 464.92 57 98.24 11.50

图6

PET和PET/PCTP2.0在600 ℃时的总离子色谱图"

表4

600 ℃条件下PET、PET/PCTP2.0的热解产物"

峰号 主要
产物
PET PET/PCTP2.0
时间/
min
峰面积/
%
时间/
min
峰面积/
%
1 CO2 1.821 9.10 1.801 14.00
2 CH3CHO 1.915 18.13 1.879 14.04
3 C6H6 3.460 1.67 3.380 2.03
4 C8H8 7.130 2.86 7.127 0.63

图7

PET和PET/PCTP2.0裂解产物吸光度随时间变化曲线"

图8

PET和PET/PCTP残炭的光学照片和SEM照片"

图9

PET和PET/PCTP复合材料的残炭的拉曼光谱图"

图10

PET/PCTP2.0残炭的XPS总扫描谱图及P2p、O1s、C1s和N1s扫描谱图"

图11

PET和PET/PCTP复合材料的断裂截面SEM照片"

图12

PET和PET/PCTP复合材料的断裂强度和断裂伸长率"

[1] BADIA J D, MARTINEZ-FELIPE A, SANTONJA-BLASCO L, et al. Thermal and thermo-oxidative stability of reprocessed poly(ethylene terephthalate)[J]. Journal of Analytical and Applied Pyrolysis, 2013, 99:191-202.
[2] LIU Y, ZHAO W, YU X, et al. Preparation of dyeing, flame retardant and anti-dripping polyethylene terephthalate fibers based on natural sodium copper chlorophyll dyeing and intercalation of phosphorylated sucrose fatty acid ester[J]. Composites Part B: Engineering, 2022. DOI:10.1016/j.compositesb.2022.110194.
[3] FU T, WANG X L, WANG Y Z. Flame-responsive aryl ether nitrile structure towards multiple fire hazards suppression of thermoplastic polyester[J]. Journal of Hazardous Materials, 2020. DOI:10.1016/j.jhazmat.2020.123714.
[4] FANG Y, LIU X, TAO X. Intumescent flame retardant and anti-dripping of PET fabrics through layer-by-layer assembly of chitosan and ammonium polyphosphate[J]. Progress in Organic Coatings, 2019, 134:162-168.
[5] MALKAPPA K, BANDYOPADHYAY J, RAY S S. Design of poly(cyclotriphosphazene)-functionalized zirconium phosphate nanoplatelets to simultaneously enhance the dynamic mechanical and flame retardancy properties of polyamide 6[J]. ACS Omega, 2020, 5(23): 13867-13877.
[6] ZHOU Y, QIU S, GUO W, et al. Construction of hierarchical Ti3C2Tx@PHBP-PHC architecture with enhanced free-radical quenching capability: effective reinforcement and fire safety performance in bis maleimide resin[J]. Chemical Engineering Journal, 2022. DOI:10.1016/j.cej.2021.131634.
[7] ZHOU X, QIU S, MU X, et al. Polyphosphazenes-based flame retardants: a review[J]. Composites Part B: Engineering, 2020. DOI:10.1016/j.compositesb.2020.108397.
[8] YANG D, DONG L, HOU X, et al. Synthesis of bio-based poly(cyclotriphosphazene-resveratrol) microspheres acting as both flame retardant and reinforcing agent to epoxy resin[J]. Polymers for Advanced Technologies, 2019, 31(1):135-145.
[9] 孔抵柱, 李家炜, 徐红, 等. 环三磷腈和三嗪衍生物协同阻燃对聚酯性能的影响[J]. 纺织学报, 2017, 38(7): 11-17.
KONG Dizhu, LI Jiawei, XU Hong, et al. Synergistic effect between cyclotriphosphazene and triazine derivatives on flame retardancy of poly(ethyleneterephthalate)[J]. Journal of Textile Research, 2017, 38(7): 11-17.
[10] PAN T, HUANG X, WEI H, et al. Intrinsically fluorescent microspheres with superior thermal stability and broad ultraviolet-visible absorption based on hybrid polyphosphazene material[J]. Macromolecular Chemistry and Physics, 2012, 213(15):1590-1595.
[11] SUI Y, SIMA H, SHAO W, et al. Novel bioderived cross-linked polyphosphazene microspheres decorated with FeCo-layered double hydroxide as an all-in-one intumescent flame retardant for epoxy resin[J]. Composites Part B: Engineering, 2022. DOI:10.1016/j.compositesb.2021.109463.
[12] QIU S, SHI Y, WANG B, et al. Constructing 3D polyphosphazene nanotube@mesoporous silica@bimetallic phosphide ternary nanostructures via layer-by-layer method: synthesis and applications[J]. ACS Applied Materials & Interfaces, 2017. DOI:10.1021/acsami.7b06440.
[13] DAVIS R D, GILMAN J W, VANDERHART D L. Processing degradation of polyamide 6/montmorillonite clay nanocomposites and clay organic modifier[J]. Polymer Degradation & Stability, 2003, 79(1):111-121.
[14] QIU S, SHI Y, WANG B, et al. Constructing 3D polyphosphazene nanotube@mesoporous silica@bimetallic phosphide ternary nanostructures via layer-by-layer method: synthesis and applications[J]. ACS Appl Mater Interfaces, 2017, 9(27): 23027-23038.
[15] QIU S, XING W, FENG X, et al. Self-standing cuprous oxide nanoparticles on silica @polyphosphazene nanospheres: 3D nanostructure for enhancing the flame retardancy and toxic effluents elimination of epoxy resins via synergistic catalytic effect[J]. Chemical Engineering Journal, 2017. DOI:10.1016/j.cej.2016.10.100.
[16] 袁野, 张安莹, 魏丽菲, 等. 含磷阻燃聚酯的合成动力学及其性能[J]. 纺织学报, 2024, 45(4):50-58.
YUAN Ye, ZHANG Anying, WEI Lifei, et al. Synthesis kinetics and properties of phosphorus containing flame-retardant polyethylene tere-phthalate[J]. Journal of Textile Research, 2024, 45(4):50-58.
[17] TAO Y, LIU C, LI P, et al. A flame-retardant PET fabric coating: flammability, anti-dripping properties, and flame-retardant mechanism[J]. Progress in Organic Coatings, 2021. DOI:10.1016/j.porgcoat.2020.105971.
[18] QIU S, XING W, MU X, et al. A 3D nanostructure based on transition-metal phosphide decorated heteroatom-doped mesoporous nanospheres interconnected with graphene: synthesis and applica-tions[J]. ACS Applied Materials & Interfaces, 2016. DOI:10.1021/acsami.6b11101.
[19] YANG Guang, WU Wei-Hong, Yong-Hui, et al. Synthesis of a novel phosphazene-based flame retardant with active amine groups and its application in reducing the fire hazard of epoxy resin[J]. Journal of Hazardous Materials, 2019. DOI:10.1016/j.jhazmat.2018.11.093.
[20] ZHAO X, WEI P, QIAN Y, et al. Effect of talc on thermal stability and flame retardancy of polycarbonate/PSBPBP composite[J]. Journal of Applied Polymer Science, 2012, 125(4):3167-3174.
[21] 李宝洁, 朱元昭, 钟毅, 等. 聚磷腈改性沸石咪唑酯骨架材料的制备及其在聚酯阻燃中的应用[J]. 纺织学报, 2022, 43(11): 104-112.
LI Baojie, ZHU Yuanzhao, ZHONG Yi, et al. Preparation and application of polyphosphazene modified zeolite imidazolate framework materials for flame retardancy of poly(ethylene terephthalate)[J]. Journal of Textile Research, 2022, 43(11): 104-112.
[22] WANG P, XIA L, JIAN R, et al. Flame-retarding epoxy resin with an efficient P/N/S-containing flame retardant: preparation, thermal stability, and flame retardance[J]. Polymer Degradation and Stability, 2018, 149:69-77.
[23] MALMGREN S, CIOSEK K, HAHLIN M, et al. Comparing anode and cathode electrode/electrolyte interface composition and morphology using soft and hard X-ray photoelectron spectroscopy[J]. Electrochimica Acta, 2013, 97: 23-32.
[24] TANG G, ZHANG R, WANG X, et al. Enhancement of flame retardant performance of bio-based polylactic acid composites with the incorporation of aluminum hypophosphite and expanded graphite[J]. Journal of Macromolecular Science Part A: Pure and Applied Chemistry, 2013, 50(2): 255-269.
[25] PING Z, LEI S, LU H, et al. Synergistic effect of nanoflaky manganese phosphate on thermal degradation and flame retardant properties of intumescent flame retardant polypropylene system[J]. Polymer Degradation & Stability, 2009, 94(2): 201-207.
[26] PARK Y T, QIAN Y, CHAN C, et al. Epoxy toughening with low graphene loading[J]. Advanced Functional Materials, 2015, 25(4): 575-585.
[1] 张洁, 郭鑫源, 关晋平, 程献伟, 陈国强. 磷/氮阻燃剂原位沉积对棉织物的耐久阻燃改性[J]. 纺织学报, 2025, 46(02): 180-187.
[2] 宋婉萌, 王宝弘, 孙宇, 杨家祥, 刘云, 王玉忠. 兼具力学性能与高效阻燃性能粘胶织物的制备及其性能[J]. 纺织学报, 2025, 46(02): 188-196.
[3] 刘延波, 高鑫羽, 郝铭, 胡晓东, 杨波. 基于光热改性的复合纤维毡及其在高黏度油吸附中的应用[J]. 纺织学报, 2024, 45(11): 55-64.
[4] 邴琳涵, 王锐, 吴雨航, 刘博同, 黄寒江, 魏建斐. 聚对苯二甲酸乙二醇酯基碳点热解法制备及其在阻燃改性中的应用[J]. 纺织学报, 2024, 45(10): 1-8.
[5] 肖宁宁, 陈智杰, 欧阳裕福, 孟金贵, 孙阳艺, 戚栋明. 超细纤维合成革用阻燃水性聚氨酯的制备及其性能[J]. 纺织学报, 2024, 45(09): 113-120.
[6] 李旭, 刘祥吉, 靳鑫, 杨承昊, 董朝红. 耐久高效磷/氮协同阻燃剂的制备及其在棉织物上的应用[J]. 纺织学报, 2024, 45(07): 121-129.
[7] 吴雨航, 魏建斐, 顾伟文, 王玉萍, 张安莹, 王锐. 共聚阻燃改性聚对苯二甲酸乙二醇酯的制备及其性能[J]. 纺织学报, 2024, 45(06): 1-10.
[8] 袁野, 张安莹, 魏丽菲, 高建伟, 陈咏, 王锐. 含磷阻燃聚酯的合成动力学及其性能[J]. 纺织学报, 2024, 45(04): 50-58.
[9] 范硕, 杨鹏, 曾锦豪, 宋潇迪, 龚昱丹, 肖遥. 抗熔滴型多元有机硅阻燃剂整理锦纶6织物的制备及其性能[J]. 纺织学报, 2024, 45(01): 152-160.
[10] 谢艳霞, 张唯强, 徐亚宁, 赵书涵, 尹雯萱, 张文强, 韩旭. 商用聚对苯二甲酸乙二醇酯短纤维中低聚物析出机制及影响因素[J]. 纺织学报, 2024, 45(01): 65-73.
[11] 姚晨曦, 万爱兰. 聚对苯二甲酸丁二醇酯/聚对苯二甲酸乙二醇酯纬编运动T恤面料的热湿舒适性[J]. 纺织学报, 2024, 45(01): 90-98.
[12] 陈顺, 钱坤, 梁付巍, 郭文文. 丁香酚基复合涂层阻燃疏水棉织物的制备及其性能[J]. 纺织学报, 2023, 44(12): 115-122.
[13] 张文琪, 李莉莉, 胡泽旭, 魏丽菲, 相恒学, 朱美芳. 基于均三嗪环结构的聚己内酰胺6复合树脂制备及其抗熔滴阻燃特性[J]. 纺织学报, 2023, 44(11): 1-8.
[14] 谭晶, 石鑫, 于景超, 程礼盛, 杨涛, 杨卫民. 聚合物热解制备玻璃纤维表面碳纳米涂层及其导电性[J]. 纺织学报, 2023, 44(11): 36-44.
[15] 孟鑫, 朱淑芳, 徐英俊, 闫旭. 用于纸质文档保护的原位静电纺废旧聚对苯二甲酸乙二醇酯膜[J]. 纺织学报, 2023, 44(09): 20-26.
Viewed
Full text
27
HTML PDF
Just accepted Online first Issue Just accepted Online first Issue
0 0 6 0 0 21

  From Others local
  Times 14 13
  Rate 52% 48%

Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!