纺织学报 ›› 2025, Vol. 46 ›› Issue (01): 163-169.doi: 10.13475/j.fzxb.20240306601

• 服装工程 • 上一篇    下一篇

中国男性飞行员体型特征分类

马帅1, 张西临2, 黄宽3,4, 王崴2(), 瞿珏2   

  1. 1.河南平原光电有限公司, 河南 焦作 454150
    2.空军工程大学 防空反导学院, 陕西 西安 710051
    3.航宇救生装备有限公司, 湖北 襄阳 441003
    4.航空防护救生技术航空科技重点实验室, 湖北 襄阳 441003
  • 收稿日期:2024-03-28 修回日期:2024-09-14 出版日期:2025-01-15 发布日期:2025-01-15
  • 通讯作者: 王崴(1974—),男,教授,博士。主要研究方向为人机交互。E-mail:85689437@qq.com
  • 作者简介:马帅(1995—),男,硕士。主要研究方向为人机工效学。
  • 基金资助:
    国家自然科学基金项目(52175282)

Classification of body shape characteristics of Chinese male pilots

MA Shuai1, ZHANG Xilin2, HUANG Kuan3,4, WANG Wei2(), QU Jue2   

  1. 1. Henan Pingyuan Optics Electronics Co., Ltd., Jiaozuo, Henan 454150, China
    2. Air Defense and Antimissile School, Air Force Engineering University, Xi'an, Shaanxi 710051, China
    3. Aerospace Life-Support Industries, Ltd., Xiangyang, Hubei 441003, China
    4. Aviation Key Laboratory of Science and Technology on Life-support Technology, Xiangyang, Hubei 441003, China
  • Received:2024-03-28 Revised:2024-09-14 Published:2025-01-15 Online:2025-01-15

摘要:

为满足飞行员防护服装的合体性需求,探究了中国男性飞行员的体型特征并对其进行科学分类。选取186位现役中国男性飞行员作为人体测量样本,依照人体测量的质量控制方法进行手工数据采集。经描述统计分析发现,影响中国男性飞行员体型的主要因素集中在围度方面。通过因子分析提取与体型相关的主成分,再借助相关性分析从每个主成分中提取特征变量,并将这些特征变量整合为4种体型指标。随后,运用K-means动态聚类分析对中国男性飞行员体型进行分类。研究结果表明:围度因子和高度因子是影响中国男性飞行员体型形态的主要特征因子,中国男性飞行员体型可分为胖体、瘦体、标准体3类,并依据结果计算得到各类体型中间体。本文研究有助于构建男性飞行员标准人台,为飞行员防护服装的设计和生产提供重要参考。

关键词: 男性飞行员, 防护服装, 聚类分析, 体型分类, 体型特征

Abstract:

Objective Pilot protective clothing is an important equipment to ensure that the pilot can complete the task normally and survive in an emergency. With the continuous improvement of the performance of modern fighter aircraft, in order to enable pilots to better play the performance of the aircraft, pilot protective clothing also needs to be more comfortable and fit. In particular, the pilot protective clothing is mostly in the style of onesie, so the pilot's body segmentation would have higher requirements. A method is proposed is to study the body shape characteristics and classification of Chinese male pilots.

Method In order to further explore the body shape characteristics and distribution of Chinese male pilots, 186 male pilots were selected as research objects to collect body shape data. The body size data collected were analyzed according to basic statistics. Further factor analysis and correlation analysis were performed on the collected data to obtain the characteristic variables affecting the body size of male pilots. Finally, according to the most relevant factors and the basis of human morphology, the characteristic variables were integrated, and the integrated indicators were classified by rapid cluster analysis.

Results From the basic statistical information, it can be seen that the main factor of the body size difference of Chinese male pilots is the circumference, especially the difference of waist and abdomen position. Similarly, the results of factor analysis show that two factors affect the body shape of male pilots, i.e., the circumference and the height. Referring to the national standard GB/T 1335.1—2008 《Standard Sizing Systems for Garments Men》, the classification of male body shape is based on the difference between the chest and waist, without describing the overall shape below the abdomen, which is not comprehensive, and the jumpsuit needs to take the overall shape into account. Combining the results of factor analysis and the basis of human morphology, the characteristic variables were integrated, and finally four aspects were used as clustering indexes: chest waist difference, hip waist difference, waist ratio and upper body flat rate. The results of K-means rapid clustering show that human body shape can be divided into three body types: fat body, thin body and average body according to the difference of chest waist, hip waist, waist ratio and flatness rate of upper body.

Conclusion In recent years, with the improvement of living standards, the body shape requirements of pilot selection are very different from the past, so the body shape difference of Chinese male pilots is obvious, and the national standard of pilot protective clothing is relatively old, and it is hence necessary to use updated data to develop targeted clothing size standards. Through analysis, waist circumference factor is identified the main factor affecting the body size difference of male pilots. Through cluster analysis, the body shape of male pilots is divided into three categories from trunk shape and body height, and the body shape is more accurately subdivided, which provides a reference for the formulation of protective clothing standards for male pilots, and also provides data for the establishment of standard human platform. Meanwhile, this study can be extended to pilot protective helmets to provide a reference for helmet personalized customization. In future studies, it is recommended to increase the age of the study subjects and better describe the relationship between body size and age change in male pilots so as to improve the accuracy of body size classification.

Key words: male pilot, protective clothing, cluster analysis, body shape classification, body shape characteristic

中图分类号: 

  • TS941.2

表1

控制部位基本统计量"

统计量 体重/
kg
身高/
mm
会阴高/
mm
颈椎
点高/
mm
胸厚/
mm
腹厚/
mm
臀厚/
mm
全臂
长/mm
大腿
长/mm
小腿
长/mm
胸围/
mm
腰围/
mm
臀围/
mm
躯干
垂直围/
mm
上臂
根围/
mm
大腿围/
mm
平均值 68.990 1 705.080 789.690 1 460.710 229.640 212.860 226.140 552.130 494.290 364.990 929.180 822.550 932.860 1 617.580 424.490 555.960
标准差 8.101 37.766 27.199 35.784 16.468 22.999 18.791 18.965 20.360 15.128 50.409 73.507 49.230 67.320 24.969 37.906
最小值 51.700 1 600.000 705.000 1 367.000 192.000 162.000 179.000 506.000 438.000 330.000 815.000 690.000 830.000 1 472.000 371.000 455.000
最大值 99.500 1 794.000 856.000 1 549.000 279.000 285.000 279.000 611.000 560.000 415.000 1 055.000 1 070.000 1 100.000 1 808.000 530.000 683.000

图1

因子碎石图"

表2

总方差解释表"

成分 初始特征根值 旋转载荷平方和
总计 方差
百分比/%
累积
贡献率/%
总计 方差
百分比/%
累积
贡献率/%
1 13.599 46.892 46.892 11.737 40.474 40.474
2 7.479 25.789 72.681 8.192 28.250 68.723
3 1.291 4.453 77.134 2.321 8.004 76.728
4 1.020 3.516 80.650 1.137 3.922 80.650

表3

旋转后的成分矩阵"

测量项目 主成分1 主成分2 主成分3
腰围 0.968
腰节围 0.967
腹厚 0.957
膝围 0.656
腰节点高 0.919
脐点高 0.913
大腿长 0.698
腿肚厚 0.501 0.737
腿肚围 0.591 0.713

表4

围度和高度因子中各变量相关指数"

围度因子各变量相关指数 高度因子各变量相关指数
围度因子变量 相关指数 高度因子变量 相关指数
胸围 0.729 身高 0.831
腰围 0.708 会阴高 0.826
臀围 0.601 颈椎点高 0.817
躯干垂直围 0.543 腰节点高 0.798
腰节围 0.525 大腿长 0.762
胸厚 0.510 肩高 0.695
大腿围 0.485 全臂长 0.672
腹厚 0.463 背后长 0.620
臀厚 0.442 坐高 0.601
上臂根围 0.406 脐点高 0.571
颈围 0.398 小腿长 0.523
肩宽 0.367 内踝高 0.432
腰节宽 0.359
膝围 0.341

表5

体型指标"

体型指标 计算公式
胸腰差 胸围-腰围
臀腰差 臀围-腰围
身腰比 身高÷腰围
上身扁平率 躯干垂直围÷(颈椎点高-会阴高)

图2

轮廓系数图"

表6

最终聚类结果"

体型指标 聚类类别
1 2 3
身腰比 1.905 2.264 2.117
胸腰差/mm 66.000 152.000 108.000
臀腰差/mm 65.000 154.000 117.000
上身扁平率 2.446 2.385 2.402

表7

单因素方差分析表"

体型指标 聚类 F 显著性
均方 自由度
身腰比 1.829 2 140.782 0.000
胸腰差 102 547.412 2 188.817 0.000
臀腰差 110 484.190 2 291.313 0.000
上身扁平率 0.057 2 10.180 0.000

图3

各聚类体型"

[1] 李金声, 虞学军. 航空航天卫生学[M]. 西安: 第四军医大学出版社,2013:8-21.
LI Jinsheng, YU Xuejun. Aerospace medicine books[M]. Xi'an: The Fourth Military Medical University Press, 2013:8-21.
[2] 余志斌. 航空航天生理学[M]. 西安: 第四军医大学出版社,2013:74-86.
YU Zhibin. Aerospace physiology[M]. Xi'an: The Fourth Military Medical University Press, 2013:74-86.
[3] 王诗谭, 汪秀花, 王云仪, 等. 连体服衣下间隙特征指标的确定及其在服装合体性评价中的应用[J]. 纺织学报, 2021, 42(9): 137-155.
WANG Shitan, WANG Xiuhua, WANG Yunyi, et al. Determination and application of air gap parameters in coverall fit analysis[J]. Journal of Textile Research, 2021, 42(9): 137-155.
[4] RAJKISHORE N, SHADI H, RAJIV P. Recent trends and future scope in the protection and comfort of fire-fighters' personal protective clothing[J]. Fire Science Reviews, 2014, 3(1):1-19.
[5] 马菡婧. 飞行员连体服外观及结构设计要求[D]. 西安: 西安工程大学,2015:11-15.
MA Hanjing. Research on the appearance and structure design of pilot's jump suits[D]. Xi'an: Xi'an Polytechnic University, 2015:11-15.
[6] ZAKARIA N, GUPTA D. Anthropometry, apparel sizing and design[M]. 2nd ed. United Kingdom: Woodhead Publishing, 2020:371-406.
[7] 徐梦娜. 基于三维扫描的青年女性体型分类研究[D]. 北京: 北京服装学院,2016:53-73.
XU Mengna. Research on the classification of young women's body based on 3D-scanning[D]. Beijing: Beijing Institute of Fashion Technology, 2016:53-73.
[8] 杨蕾, 马凯. 北京地区中年女性体型细分研究[J]. 北京服装学院学报(自然科学版), 2021, 41(2): 35-40.
YANG Lei, MA Kai. Body shape classification of middle-aged women in Beijing[J]. Journal of Beijing Institute of Fashion Technology (Natural Science Edition), 2021, 41(2):35-40.
[9] LIN X, NORSAADAH Z, WAN S R. Classification of lower limb body shapes of paralysed female wheelchair users in Hebei, China: analysis of anthropometric data using clustering approach[J]. Ergonomics, 2023, 67(9): 1190-1197.
[10] DEEPTI G. Anthropometric study of young India men for garment sizing[J]. Research Journal of Textile and Apparel, 2010, 14(1):82-89.
[11] LI P, MITCHELL K B. A shape classification scheme for female torso[J]. Applied Ergonomics, 2023. DOI:10.1016/j.apergo.2022.103904.
[12] 王梦阳. 中国男性飞行员体型分布特点的研究[D]. 西安: 第四军医大学,2002:23-30.
WANG Mengyang. The study on characters of body type distribution of Chinese aircrewmen[D]. Xi'an: The Fourth Military Medical University, 2002:22-30.
[13] 王祺明, 张渭源. 服装人体测量的方式比较研究[J]. 四川丝绸, 2007(1):39-41.
WANG Qiming, ZHANG Weiyuan. Comparative study of garment anthropometric[J]. Sichuan Silk, 2007(1):39-41.
[14] 袁诗婷, 王朝晖. 长三角地区成年胖体女性体型特征及分类[J]. 纺织高校基础科学学报, 2022, 35(2): 36-43.
YUAN Shiting, WANG Zhaohui. Study on the body features and classification of obese adult women in Yangtze River Delta[J]. Basic Sciences Journal of Textile Universities, 2022, 35(2): 36-43.
[15] 赵星. 天津市女大学生体型分类及实验原型的构建[D]. 天津: 天津工业大学,2018:31-35.
ZHAO Xing. Construction of body classification and experimental prototype of female college students in Tianjin[D]. Tianjin: Tiangong University, 2018: 31-35.
[16] 方方, 王子英. K-means聚类分析在人体体型分类中的应用[J]. 东华大学学报(自然科学版), 2014, 40(5):593-598.
FANG Fang, WANG Ziying. Application of K-means clustering analysis in the body shape classification[J]. Journal of Donghua University(Natural Science), 2014, 40(5): 593-598.
[1] 吴金颖, 李炘, 丁笑君, 邱文池, 邹奉元. 基于空间向量模长的青年女性腰腹臀部形态分类与判别[J]. 纺织学报, 2024, 45(04): 180-187.
[2] 杨光, 杨小兵, 栗丽, 姚之凤, 周川, 张明明. 新修定的化学防护服国家标准解析[J]. 纺织学报, 2024, 45(03): 163-168.
[3] 刘咏梅, 刘思忆, 于晓坤, 薛惠心, 张向辉. 中国东部地区中老年女性体型特征与分类[J]. 纺织学报, 2023, 44(07): 184-191.
[4] 戴艳阳, 王诗潭, 王云仪, 李俊. 基于运动生物力学的防护服装活动性能研究进展[J]. 纺织学报, 2022, 43(11): 212-218.
[5] 钟泽君, 张贝贝, 徐凯忆, 王若雯, 顾冰菲. 基于特征参数的青年女性乳房形态分析[J]. 纺织学报, 2022, 43(10): 148-154.
[6] 汪芬芬, 王革辉, 黄添宜, 张向辉, 王永荣. 正侧面形态特征驱动的女性腿型分类[J]. 纺织学报, 2022, 43(09): 188-194.
[7] 刘咏梅, 薛惠心, 徐丹娘, 张向辉. 2020版东华女装原型的持续性结构修正[J]. 纺织学报, 2022, 43(07): 135-140.
[8] 张健, 徐凯忆, 赵崧灵, 顾冰菲. 基于二维照片的青年男性颈肩部形态分类与识别[J]. 纺织学报, 2022, 43(05): 143-149.
[9] 晋金迪, 姚彤, 王军, 孙见梅, 潘力. 大连地区老年女性体型分类研究[J]. 纺织学报, 2022, 43(05): 150-155.
[10] 张印辉, 杨宏宽, 刘强, 何自芬. 基于模型压缩与感受野增强的下茧实时检测[J]. 纺织学报, 2021, 42(11): 29-38.
[11] 崔文, 李小辉. 女装衣身前浮余量与人体胸凸形态的关系[J]. 纺织学报, 2021, 42(04): 139-143.
[12] 王婷, 顾冰菲. 基于二维图像的青年女性颈肩部形态自动识别[J]. 纺织学报, 2020, 41(12): 111-117.
[13] 翟丽娜, 李俊, 杨允出. 热防护服装测评用传感器的发展及其研究现状[J]. 纺织学报, 2020, 41(10): 188-196.
[14] 刘婷婷, 徐红, 梅馨元, 刘一心, 肖爱民. 基于XGBoost算法对新疆女性臀部体型判别及原型修正[J]. 纺织学报, 2020, 41(07): 147-153.
[15] 何佳臻, 薛萧昱, 王敏, 李俊. 基于最大衰减因子模型的服装热防护性能预测[J]. 纺织学报, 2020, 41(06): 112-117.
Viewed
Full text
36
HTML PDF
Just accepted Online first Issue Just accepted Online first Issue
0 0 3 0 0 33

  From Others local
  Times 15 21
  Rate 42% 58%

Abstract
86
Just accepted Online first Issue
0 0 86
  From Others local
  Times 65 21
  Rate 76% 24%

Cited

Web of Science  Crossref   ScienceDirect  Search for Citations in Google Scholar >>
 
This page requires you have already subscribed to WoS.
  Shared   
  Discussed   
No Suggested Reading articles found!