纺织学报 ›› 2024, Vol. 45 ›› Issue (08): 54-64.doi: 10.13475/j.fzxb.20240400402

• 纺织科技新见解学术沙龙专栏:先进非织造品与技术 • 上一篇    下一篇

熔融双组分超细纤维成纤技术研究进展

朵永超1, 宋兵1, 张如全2, 许秋歌1, 钱晓明1()   

  1. 1.天津工业大学 纺织科学与工程学院, 天津 300387
    2.武汉纺织大学 纺织科学与工程学院, 湖北 武汉 430200
  • 收稿日期:2024-04-01 修回日期:2024-04-26 出版日期:2024-08-15 发布日期:2024-08-21
  • 通讯作者: 钱晓明(1964—),男,教授,博士。主要研究方向为新型非织造材料制备技术、服装功能与舒适性。E-mail:qxm@tiangong.edu.cn
  • 作者简介:朵永超(1992—),男,讲师,博士。主要研究方向为新型非织造材料制备技术。
  • 基金资助:
    山东省科技计划项目(2021CXGC011001);天津市科技计划项目(17PTSYJC00150)

Research progress in melt spinning technology for bicomponent microfibers

DUO Yongchao1, SONG Bing1, ZHANG Ruquan2, XU Qiuge1, QIAN Xiaoming1()   

  1. 1. School of Textile Science and Engineering, Tiangong University, Tianjin 300387, China
    2. College of Textile Science and Engineering, Wuhan Textile University, Wuhan, Hubei 430200, China
  • Received:2024-04-01 Revised:2024-04-26 Published:2024-08-15 Online:2024-08-21

摘要:

为深入探究熔融双组分复合纤维原纤化的超细纤维成形技术,介绍了共混纺丝和共轭纺丝2种复合纺丝技术及其在生产超细纤维时的原料及工艺,具体阐述了海岛型复合纤维和裂离型复合纤维开纤工艺及特点,分析了聚合物及工艺对复合纤维生产超细纤维的影响。综述了熔融复合纤维原纤化用到的化学溶剂开纤、水溶开纤、机械开纤等开纤技术。概述了用熔融复合纺丝技术生产的超细纤维材料在合成革、过滤与分离、医用防护、卫生健康等领域中的应用,提出了复合纺丝技术生产超细纤维的发展方向,并指出复合纤维有望通过成形技术实现原料多元化、纤维细旦化、材料功能化等方面的不断发展和创新,将推动相关产业朝着更加可持续和环保的方向发展。

关键词: 双组分纤维, 超细纤维, 复合纺丝, 海岛型纤维, 裂离型纤维, 开纤技术

Abstract:

Significance Microfiber materials, as a strategic emerging material, play an indispensable role in national economic and social development, constituting a focal point of global competition within the textile industry. Exhibiting characteristics such as low fiber linear density, low bending stiffness, large specific surface area, adsorption capability, and strong capillary effects, microfibers find widespread applications in fields including medical hygiene, personal protection, environmental sustainability, energy conservation, clothing, and home textiles. In the fabrication processes of microfibers, nonwovens produced via methods such as melt blowing, flash evaporation, and electrospinning exhibit relatively low strength, limiting their usage to filtration and medical protective applications. While direct melt spinning offers lower production costs, stringent process requirements often hinder the attainment of high-quality microfibers. In the realm of composite spinning, the production of microfiber materials involves the utilization of physical or chemical methods to achieve the formation of bicomponent composite fibers. This method is characterized by its high speed, efficiency, and productivity, making it one of the most effective techniques for mass-producing high-strength microfiber materials.

Progress This paper provides an overview of the forming processes, polymer properties, and technical requisites involved in the production of microfibers through composite spinning. It elaborates on the polymer selection, fiber formation mechanisms, and distinctive traits of sea-island and split composite fibers. Moreover, it delves into the principles of fiber precursor formation using chemical and physical methods, discussing the merits and drawbacks of the processes. Furthermore, based on these characteristics, it analyzes the selection of different composite fiber polymers and the trends in process development both domestically and internationally. It examines their impact on the production of microfibers and nonwoven materials. The application domains of melt composite fibers for microfibers material production are summarized, and future directions for the development of composite fiber production for microfibers are proposed.

Conclusion and Prospect The preparation of microfibers nonwovens through biocomponent composite spinning holds vast potential applications in synthetic leather base, medical hygiene, precision filtration, apparel, and various other fields. These materials have been widely produced and employed in numerous applications. With the emergence of green concepts such as carbon neutrality and energy conservation, the development of efficient and eco-friendly fiber spinning technologies, such as low-energy consumption (split fiber easy-splitting technology) and chemical-free methods (thermoplastic polyvinyl alcohol, water-soluble polyester composite spinning), represents the future direction of composite fiber production for microfibers. Additionally, as nonwoven technology continues to advance and interdisciplinary concepts gain traction, composite fibers are poised to achieve further refinement in fiber morphology through shaping techniques, functionalization through advanced finishing technologies, and product greening through material-process integration, thus better serving society.

Key words: bicomponent fiber, microfiber, composite spinning, sea-island fiber, split fiber, splitting technology

中图分类号: 

  • TS174.8

图1

共混纺丝示意图"

图2

复合纤维截面示意图"

图3

共轭纺丝示意图"

图4

TPVA/PA复合纤维微观形貌"

图5

水溶时间和温度对复合纤维开纤的影响"

图6

复合纤维裂离机制"

图7

桔瓣型复合纤维SEM照片"

图8

双组分纺黏水刺工艺流程图"

图9

开纤前后非织造布微观形貌(×1 000)"

[1] HOEHNEMANN T, SCHNEBELE Y, WANG X, et al. Nanoval technology:an intermediate process between meltblown and spunbond[J]. Materials, 2023, 7(16): 2932.
[2] XIA L, XI P, CHENG B. High efficiency fabrication of ultrahigh molecular weight polyethylene submicron filaments/sheets by flash-spinning[J]. Journal of Polymer Engineering, 2016, 36(1): 97-102.
[3] WANG J J, WANG X Y, ZHONG D C, et al. Nanofibrous membranes modified by zwitterionic polyelectrolyte brushes for effective adsorption of ciprofloxacin hydrochloride[J]. Applied Surface Science, 2024. DOI:10.1016/j.apsusc.2024.159760.
[4] PERSSON M, LORITE G S, CHO S W, et al. Melt spinning of poly(lactic acid) and hydroxyapatite composite fibers: influence of the filler content on the fiber properties[J]. ACS Applied Materials & Interfaces, 2013, 5(15): 6864-6872.
[5] KIM H C, KIM D, LEE J Y, et al. Effect of wet spinning and stretching to enhance mechanical properties of cellulose nanofiber filament[J]. International Journal of Precision Engineering and Manufacturing-Green Technology, 2019, 6(3): 567-575.
[6] AGO M, BORGHEI M, HAATAJA J S, et al. Mesoporous carbon soft-templated from lignin nanofiber networks: microphase separation boosts supercapacitance in conductive electrodes[J]. RSC Advances, 2016, 6(89): 85802-85810.
[7] ZHENG Z, CHEN P, XIE M, et al. Cell environment-differentiated self-assembly of nanofibers[J]. Journal of the American Chemical Society, 2016, 138(35): 11128-11131.
doi: 10.1021/jacs.6b06903 pmid: 27532322
[8] LEÓN-BOIGUES L, NAVARRO R, MIJANGOS C. Free radical nanocopolymerization in AAO porous materials: kinetic, copolymer composition and monomer reactivity ratios[J]. Polymer, 2021. DOI:10.1016/j.polymer.2021.123989.
[9] ZHANG S M, MENG C Z, WU Y H, et al. Efficient production of copolymerized PA6-based polymer fibers: oligomer control and direct melt spinning[J]. Polymer, 2024. DOI:10.1016/j.polymer.2024.126762.
[10] CUI L, ZHANG N, CUI W, et al. A novel nano/micro-fibrous scaffold by melt-spinning method for bone tissue engineering[J]. Journal of Bionic Engineering, 2015, 12(1): 117-128.
[11] HE H, CHEN L, ZHANG Y, et al. Studies on melt spinning of sea-island fibers: I: morphology evolution of polypropylene/polystyrene blend fibers[J]. Fibers and Polymers, 2014, 15(9): 1941-1949.
[12] CHEN L, HE H, ZHANG Y, et al. Studies on melt spinning of sea-island fibers: II: Dynamics of melt spinning of polypropylene/polystyrene blend fibers[J]. Fibers and Polymers, 2015, 16(2): 449-462.
[13] GUO C C, ZHU J T, WU P F, et al. Degradable side-by-side fiber of poly(butylene succinate-co-terephthalate)/poly(L-lactic acid) with half-wrinkled surfaces and fully crimped structures[J]. Materials Letters, 2024. DOI:10.1016/j.matlet.2024.136085.
[14] ZHANG X, JIN G, MA W, et al. Fabrication and properties of poly(L-lactide) nanofibers via blend sea-island melt spinning[J]. Journal of Applied Polymer Science, 2015, 132(1): 357-384.
[15] FU H, ZHANG T, ZHANG S, et al. Current advances on sea-island microfiber nonwoven materials preparation technology and its applications: a review[J]. Journal of The Textile Institute, 2023, 115: 1-11.
[16] ZHANG Z, TU W, PEIJS T, et al. Fabrication and properties of poly(tetrafluoroethylene) nanofibres via sea-island spinning[J]. Polymer, 2017, 109: 321-331.
[17] SUGAWARA K, IKAGA T, KIM K H, et al. Fiber structure development in PS/PET sea-island conjugated fiber during continuous laser drawing[J]. Polymer, 2015, 79: 37-46.
[18] YASOSHIMA R, TAJIMA T, YAMAGUCHI H, et al. Nanofiber and nanofiber powder of syndiotactic polystyrene fabricated by laser-heated drawing of sea-island-type conjugated-spun fiber[J]. Journal of Fiber Science and Technology, 2018, 74(8): 186-195.
[19] AN H J, CHOI Y C, OH H J, et al. Structure development in high-speed melt spinning of high-molecular weight poly(ethylene terephthalate)/polypropylene islands-in-the-sea bicomponent fibers[J]. Polymer, 2022. DOI:10.1016/j.polymer.2021.124365.
[20] BAUTISTA J R, BRUENIG H, POETSCHKE P, et al. Improved sensitivity of liquid sensing melt-spun polymer fibers filled with carbon nanoparticles by considering solvent-polymer solubility parameters[J]. Materials Research Express, 2024. DOI:10.1088/2053-1591/acd7c4.
[21] ZHAO B B, HAN X, HU C G, et al. Hydrophilic modification of polyester/polyamide 6 hollow segmented pie microfiber nonwovens by UV/TiO2/H2O2[J]. Molecules, 2023, 9(23): 3826.
[22] 屠海燕, 李建邺, 黄华福, 等. PET/PBT双十字形复合纤维纺丝组件及喷丝板设计[J]. 纺织报告, 2022, 41(11): 1-3.
TU Haiyan, LI Janye, HUANG Huafu, et al. PET/PBT double cross shaped composite fiber spinning module and spinneret plate design[J]. Textile Report, 2022, 41(11): 1-3.
[23] IIMURO H. Business development of polyester nano fiber (NanofrontTM)[C]// Proceedings of International Nanofiber Symposium 2009. Japan:[s.n.], 2009: 16-18.
[24] HOLLOWELL K B, ANANTHARAMAIAH N, POURDEYHIMI B. Hybrid mixed media nonwovens composed of macrofibers and microfibers. part I: three-layer segmented pie configuration[J]. Journal of The Textile Institute, 2013, 104(9): 972-979.
[25] SHANG M Y, GAO Z Y, CHENG H L, et al. Relationship between microstructure evolution and properties enhancement of carbon nanotubes-filled polybutylene terephthalate/polypropylene blends induced by thermal annealing[J]. Journal of Applied Polymer Science, 2022, 139(8): 51689.
[26] TSAMPANAKIS I, WHITE O A. The mechanics of forming ideal polymer-solvent combinations for open-loop chemical recycling of solvents and plastics[J]. Polymers, 2021, 14(1): 1-20.
[27] XU N, TAO Y N, WANG X C, et al. Construction of a novel substrate of unfigured islands-in-sea microfiber synthetic leather based on waste collagen[J]. ACS Omega, 2021, 6(40): 26086-26097.
doi: 10.1021/acsomega.1c03061 pmid: 34660969
[28] KANG J M, KIM M G, LEE J E, et al. Alkaline hydrolysis and dyeing characteristics of sea-island-type ultraultra-fine fibers of PET tricot fabrics with black disperse dye[J]. Polymers, 2020, 12(6): 1-14.
[29] 卢志敏. PET/PA6桔瓣型双组分纺粘法非织造材料的开纤工艺与产品开发[D]. 天津: 天津工业大学, 2012: 3-20.
LU Zhimin. PET/PA6 segmented pie spunbond nonwoven with split-fiber process and product development[D]. Tianjin: Tiangong University, 2012: 3-20.
[30] LIU Y. Investigation of fiber splitting in side-by-side bicomponent meltblown nonwoven webs through post treatment[M]. USA: The University of Tennessee, 2004: 10-15.
[31] HUANG W, HUANG X X, WANG P, et al. Poly (glycolic acid) nanofibers via sea-island melt-spinning[J]. Macromolecular Materials and Engineering, 2018. DOI:10.1002/mame.201800425.
[32] 刘若冰, 朱谱新. 溶剂法裂离桔瓣型PET/PA6复合纤维[J]. 纺织学报, 1997, 18(4): 18-20.
LIU Ruobing, ZHU Puxin. Solvent cleavage of orange-flap PET/PA6 composite fibers[J]. Journal of Textile Research, 1997, 18(4): 18-20.
[33] JUNAID M, MALIK R N, PEI D S. Health hazards of child labor in the leather products and surgical instrument manufacturing industries of Sialkot, Pakistan[J]. Environmental Pollution, 2017, 226: 198.
doi: S0269-7491(16)32521-0 pmid: 28432963
[34] ZHANG X, JIN G, MA W, et al. Fabrication and properties of poly (L-lactide) nanofibers via blend sea-island melt spinning[J]. Journal of Applied Polymer Science, 2015. DOI:10.1002/app.41228.
[35] YANG F, ZHANG S S, CHENG K, et al. A hydrothermal process to turn waste biomass into artificial fulvic and hu mic acids for soil remediation[J]. Science of the Total Environment, 2019, 686: 1140-1151.
[36] YAN M H, WANG J, SU X Y, et al. A 3D paddle-wheel type Cu(II)-based MOF with pcu topology as an efficient photocatalyst for antibiotics photodegradation[J]. New Journal of Chemistry, 2023, 23(47): 11134-11142.
[37] MAL J, NANCHARAIAH Y V, MAHESHWARI N, et al. Continuous removal and recovery of tellurium in an upflow anaerobic granular sludge bed reactor[J]. Journal of Hazardous Materials, 2017, 327: 79-88.
doi: S0304-3894(16)31193-1 pmid: 28043045
[38] LI M L, JIN E Q, LIAN Y Y. Effects of molecular structure of aliphatic dicarboxylic ester on the properties of water-soluble polyester for warp sizing[J]. Journal of The Textile Institute, 2016, 12(107): 1490-1500.
[39] GUO D, WANG Q, BAI S B. Poly(vinyl alcohol)/melamine phosphate composites prepared through thermal processing: thermal stability and flame retardancy[J]. Polymers for Advanced Technologies, 2013, 24(3): 339-347.
[40] LIU H L, CHEN R L, SUN X Y, et al. Preparation and properties of PBAT/PLA composites modified by PVA and cellulose nanocrystals[J]. Journal of Applied Polymer Science, 2022. DOI:10.1002/app.51474.
[41] JAVANBAKHT T, DAVID E. Rheological and physical properties of a nanocomposite of graphene oxide nanoribbons with polyvinyl alcohol[J]. Journal of Thermoplastic Composite Materials, 2022, 35(5): 651-664.
[42] LIU Q, CHEN N, BAI S B, et al. Effect of silver nitrate on the thermal processability of poly(vinyl alcohol) modified by water[J]. RSC Advances, 2018, 8(5): 2804-2810.
[43] ZHANG X, LIU L, WENG L. Preparation of water-soluble electrical steel coating with SiO2 modified by glycine[J]. Polymer Composites, 2018, 39(4): 229-239.
[44] 马清芳, 程贞娟, 秦伟明, 等. 水溶性聚酯的制备及其性能[J]. 纺织学报, 2007, 28(6): 20-22,27.
MA Qingfang, CHENG Zhenjuan, QIN Weiming, et al. Preparation and characterization of water-soluble polyester[J]. Journal of Textile Research, 2007, 28(6): 20-22,27.
[45] 齐庆莹, 陈文兴, 秦伟明, 等. 水溶性聚酯的流变行为[J]. 纺织学报, 2008, 29(8): 11-14.
QI Qingying, CHEN Wenxing, QIN Weiming, et al. Rheological behavior of water-soluble polyesters[J]. Journal of Textile Research, 2008, 29(8): 11-14.
[46] 赵宝宝, 钱幺, 钱晓明, 等. 梯度结构双组分纺粘水刺非织造材料的制备及其性能[J]. 纺织学报, 2018, 39(5): 56-61.
ZHAO Baobao, QIAN Yao, QIAN Xiaoming, et al. Preparation and properties of bicomponent spunbond-spunlance nonwoven materials with gradient struc-ture[J]. Journal of Textile Research, 2018, 39(5): 56-61.
[47] 王敏. PET/PA6双组份纺粘水刺非织造材料工艺及其性能的研究[D]. 杭州: 浙江理工大学, 2016: 2-6.
WANG Min. Research on the process and properties of PET/PA6 bicomponent spunbond-spunlace nonwoven material[D]. Hangzhou: Zhejiang University of Technology, 2016: 2-6.
[48] 张恒. 纺粘管式牵伸机理及PET/PA6双组份非织造材料的研究[D]. 天津: 天津工业大学, 2015: 11-16.
ZHANG Heng. Research on spunbond tubular drafting mechanism and PET/PA6 two-component nonwoven materials[D]. Tianjin: Tiangong University, 2015: 11-16.
[49] PRAHSARN C, KLINSUKHON W, PADEE S, et al. Hollow segmented-pie PLA/PBS and PLA/PP bicomponent fibers: an investigation on fiber properties and splittability[J]. Journal of Materials Science, 2016, 51(24): 10910-10916.
[50] AYAD E, CAYLA A, RAULT F, et al. Effect of viscosity ratio of two immiscible polymers on morphology in bicomponent melt spinning fibers[J]. Advances in Polymer Technology, 2018, 37(4): 1134-1141.
[51] SCHILDE W, ERTH H, HEYE U. Spunbond nonwovens made from splittable bi-component filaments[J]. Chemical Fibers International, 2007, 57(1): 61-64.
[52] 卜义华. PET/PA6中空桔瓣型纺粘复合纤维的制备及其开纤研究[D]. 天津: 天津工业大学, 2012: 26-35.
BU Yihua. Preparation of PET/PA6 hollow orange petal spunbond composite fiber and its open fiber research[D]. Tianjin: Tiangong University, 2012: 26-35.
[53] DUO Y C, QIAN X M, ZHAO B B, et al. Easily splittable hollow segmented-pie microfiber nonwoven material with excellent filtration and thermal-wet comfort for energy savings[J]. Journal of Materials Research and Technology, 2022, 17: 876-887.
[54] DUO Y C, QIAN X M, ZHAO B B, et al. Preparation and properties of a fluffy HSPET/PA6 hollow segmented pie microfiber nonwovens[J]. Textile Research Journal, 2022, 92(17/18): 3221-3233.
[55] 钱雯瑾. 分裂型纤维水刺缠结工艺及裂离机理研究[D]. 上海: 东华大学, 2011: 3-10.
QIAN Wenjin. Study on split-fiber spunlace process and splitting theory[D]. Shanghai: Donghua University, 2011: 3-10.
[56] 朵永超, 钱晓明, 赵宝宝, 等. 超细纤维合成革基布的制备及其性能[J]. 纺织学报, 2020, 41(9): 81-87.
DUO Yongchao, QIAN Xiaoming, ZHAO Baoao, et al. Preparation and properties of microfiber synthetic leather base[J]. Journal of Textile Research, 2020, 41(9): 81-87.
[57] 赵宝宝, 钱幺, 刘凡, 等. 中空桔瓣型超细纤维/水性聚氨酯合成革的制备及性能[J]. 复合材料学报, 2017, 34(11): 2392-2400.
ZHAO Baobao, QIAN Yao, LIU Fan, et al. Preparation and properties of hollow segmented-pie microfiber/waterborne polyurethane synthetic lea-ther[J]. Acta Materiae Compositae Sinica, 2017, 34(11): 2392-2400.
[58] 田新娇, 柳静献, 毛宁, 等. 基于海岛纤维的新型滤料实验研究[J]. 东北大学学报(自然科学版), 2017, 38(8): 1163-1166.
doi: 10.12068/j.issn.1005-3026.2017.08.021
TIAN Xinjiao, LIU Jingxian, MAO Ning, et al. Experimental study on the new filter made from sea-islandfibers[J]. Journal of Northeastern University (Natural Science), 2017, 38(8): 1163-1166.
[59] YANG Y, YE L, KUNLI G, et al. Dopamine intercalated polyelectrolyte multilayered nanofiltration membranes toward high permselectivity and ion-ion selectivity[J]. Journal of Membrane Science, 2022. DOI:10.1016/j.memsci.2022.120337.
[60] ZHANG H, CAO Y, ZHEN Q, et al. Facile preparation of PET/PA6 bicomponent microfilament fabrics with tunable porosity for comfortable medical protective clothing[J]. ACS Applied Bio Materials, 2022, 5(7): 3509-3518.
doi: 10.1021/acsabm.2c00447 pmid: 35793521
[61] 安琪, 付译鋆, 张瑜, 等. 医用防护服用非织造材料的研究进展[J]. 纺织学报, 2020, 41(8): 188-196.
AN Qi, FU Yijun, ZHANG Yu, et al. Research progress of nonwovens for medical protective gar-ment[J]. Journal of Textile Research, 2020, 41(8): 188-196.
[62] 杨旭红. 非织造擦拭巾的研究进展[J]. 南通大学学报(自然科学版), 2022, 21(3): 1-13.
YANG Xuhong. Research development of nonwoven wipes[J]. Journal of Nantong University (Natural Science Edition), 2022, 21(3): 1-13.
[1] 葛美彤, 董智佳, 丛洪莲, 丁玉琴. 凹凸点阵双面织物的结构与湿热管理评价[J]. 纺织学报, 2024, 45(07): 47-54.
[2] 李琛, 王冬, 仲鸿天, 董朋, 付少海. 超细纤维合成革含浸用水性聚氨酯的合成及其应用[J]. 纺织学报, 2024, 45(03): 129-136.
[3] 秦子轩, 张恒, 李晗, 翟倩, 甄琪, 钱晓明. 非溶相共混熔喷非织造技术的研究进展[J]. 纺织学报, 2024, 45(03): 219-226.
[4] 刘金鑫, 周雨萱, 朱柏融, 吴海波, 张克勤. 热黏合聚乙烯/聚丙烯双组分纺黏非织造材料性能及其过滤机制[J]. 纺织学报, 2024, 45(01): 23-29.
[5] 王镕琛, 张恒, 翟倩, 刘瑞焱, 黄鹏宇, 李霞, 甄琪, 崔景强. 聚乳酸超细纤维敷料的熔喷成形工艺及其快速导液特性[J]. 纺织学报, 2024, 45(01): 30-38.
[6] 高强, 范浩军, 颜俊, 陈玉国, 郑萍. 三维超疏水超细纤维绒面革的仿生构建[J]. 纺织学报, 2022, 43(10): 126-132.
[7] 石磊, 张琳炜, 刘亚, 夏磊, 庄旭品. 分离膜湿法非织造支撑体的结构设计与应用[J]. 纺织学报, 2022, 43(06): 15-21.
[8] 俞琰, 王西朝, 张瑞云, 李蓉丽, 程隆棣. 云南野生火草纤维及其绒网的结构与性能[J]. 纺织学报, 2022, 43(04): 10-14.
[9] 朵永超, 钱晓明, 郭寻, 高龙飞, 白赫, 赵宝宝. 中空桔瓣型高收缩聚酯/聚酰胺6超细纤维非织造布的制备及其性能[J]. 纺织学报, 2022, 43(02): 98-104.
[10] 于金超, 姬洪, 陈康, 甘宇. 聚醚酯/聚对苯二甲酸丁二醇酯并列复合纤维的制备及其性能[J]. 纺织学报, 2021, 42(04): 42-47.
[11] 廖壑, 王建宁, 张东剑, 甘学辉, 张玉梅, 王华平. 并列复合纺丝孔道内流动组分的界面分布数值模拟[J]. 纺织学报, 2021, 42(01): 30-34.
[12] 朵永超, 钱晓明, 赵宝宝, 钱幺, 邹志伟. 超细纤维合成革基布的制备及其性能[J]. 纺织学报, 2020, 41(09): 81-87.
[13] 张凌云, 钱晓明, 邹驰, 邹志伟. SiO2气凝胶/聚酯-聚乙烯双组分纤维复合保暖材料的制备及其性能[J]. 纺织学报, 2020, 41(08): 22-26.
[14] 王亚停, 赵家琪, 王碧佳, 冯雪凌, 钱国春, 隋晓锋. 超细纤维合成革的染色与功能整理研究进展[J]. 纺织学报, 2020, 41(07): 188-196.
[15] 刘雷艮, 沈忠安, 林振锋, 陶金. 聚乳酸/壳聚糖/Fe3O4超细纤维膜对酸性蓝MTR的吸附性能及机制[J]. 纺织学报, 2020, 41(05): 20-24.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!